
Naev Development Manual
Version 0.12.0-alpha.1+dev

Naev DevTeam
May 2, 2024

2

Contents

Sectionsmarkedwith are specific to the Sea of Darkness default
Naev universe.

1 Introduction 9
1.1 What is Naev? . 9

I Naev Engine 11

2 Introduction to the Naev Engine 13
2.1 Getting Started . 13
2.2 Plugins . 14

3 Plugin Framework 15
3.1 Directory Structure . 15
3.2 Plugin Meta-Data plugin.xml 17
3.3 Plugin Repository . 18
3.4 Tips and Tricks . 18

3.4.1 Making Compatible Changes 19
3.5 Extending Naev Functionality 20

3.5.1 Adding News . 20
3.5.2 Adding Bar NPCs 21
3.5.3 Adding Derelict Events 22
3.5.4 Adding Points of Interest 22
3.5.5 Adding Personalities 22

4 Missions and Events 23
4.1 Mission Guidelines . 24
4.2 Getting Started . 24
4.3 Basics . 27

4.3.1 Headers . 27
4.3.2 Memory Model . 31

3

4 CONTENTS

4.3.3 Mission Variables . 33
4.3.4 Hooks . 33
4.3.5 Translation Support . 36
4.3.6 Colouring Text . 38
4.3.7 System Claiming . 39
4.3.8 Mission Cargo . 40
4.3.9 Ship Log . 41
4.3.10 Visual Novel Framework 42

4.4 Advanced Usage . 45
4.4.1 Handling Aborting Missions 45
4.4.2 Dynamic Factions . 45
4.4.3 Minigames . 46
4.4.4 Cutscenes . 46
4.4.5 Unidiff . 47
4.4.6 Equipping with equipopt 47
4.4.7 Event-Mission Communication 47
4.4.8 LuaTK API . 48
4.4.9 Love2D API . 48

4.5 Tips and Tricks . 49
4.5.1 Optimizing Loading . 49
4.5.2 Global Cache . 50
4.5.3 Finding Natural Pilots 51
4.5.4 Making Aggressive Enemies 51
4.5.5 Working with Player Fleets 51

4.6 Full Example . 52

5 Systems and System Objects 59
5.1 Systems . 59

5.1.1 Universe Editor . 59
5.1.2 System XML . 60
5.1.3 System Tags . 62
5.1.4 Defining Jumps . 62
5.1.5 Asteroid Fields . 62

5.2 System Objects (Spobs) . 63
5.2.1 System Editor . 63
5.2.2 Spob Classes . 63
5.2.3 Spob XML . 64
5.2.4 Spob Tags . 66
5.2.5 Lua Scripting . 68
5.2.6 Techs . 68

CONTENTS 5

6 Outfits 69
6.1 Slots . 69
6.2 Ship Stats . 69
6.3 Outfit Types . 69

6.3.1 Modification Outfits . 69

7 Ships 71
7.1 Ship Classes . 71
7.2 Ship XML . 72
7.3 Ship Graphics . 75

7.3.1 Specifying Full Paths 76
7.4 Ship Conditional Expressions 77
7.5 Ship trails . 77
7.6 Ship Slots . 77

II Naev “Sea of Darkness” Lore 79

8 Introduction to Naev Lore 81

9 Universal Synchronized Time (UST) 83
9.1 Explanation . 83
9.2 Time passage . 84
9.3 History of Humanity in Naev 84

9.3.1 The First Growth (UST -1000? to UST -400) 85
9.3.2 The Second Growth (UST -400 to UST -100) 85
9.3.3 The Federation (UST -300 to UST -100) 86
9.3.4 The Faction Wars (UST -100 to UST 0) 86
9.3.5 Rise of the Empire (UST 0 to UST 300) 87
9.3.6 Decline of the Empire (UST 300 to UST 593) 87
9.3.7 The Incident (UST 593:3726.4663) 88

10 The Empire 89
10.1 The Facts . 89
10.2 Government . 89
10.3 Interaction with the Houses . 90
10.4 Imperial Bureaucracy . 90
10.5 In-Game Database . 91

10.5.1 History . 91
10.5.2 Territory . 91
10.5.3 Economy . 92
10.5.4 Science and Technology 92

6 CONTENTS

10.5.5 Political System . 92

11 Great House Dvaered 95
11.1 The Facts . 95

11.1.1 History . 95
11.1.2 Government . 96

11.2 Warlords and Dvaered High Command 97
11.3 How the Dvaered fight in space 97

11.3.1 Summary . 97
11.3.2 General doctrine of the Dvaered space navy: 98
11.3.3 Consequence on the ships design: 98
11.3.4 Origin of the ships designs (except for the Goddard): . 99
11.3.5 List of Dvaered Ships 99
11.3.6 Needed Classes . 102
11.3.7 Unused Classes . 102
11.3.8 List of Dvaered Outfits 102

12 Great house Za’lek 105
12.1 The Facts . 105

12.1.1 Za’lek Society . 105
12.1.2 History . 106

13 Great House Sirius 109
13.1 The Facts . 109
13.2 Social Structure . 109
13.3 Sirichana . 110
13.4 The Touched . 111
13.5 House Sirius: Present day . 112
13.6 In-Game Database . 112

13.6.1 The Nasin . 112

14 Soromid 115
14.1 The Facts . 115
14.2 History . 115

14.2.1 Sorom . 115
14.2.2 Gene Treatment . 116
14.2.3 The Soromid . 117

14.3 Political Structure . 118

15 Galactic Space Pirates 119
15.1 The Facts . 119
15.2 Wild Ones Clan . 119

CONTENTS 7

15.3 Raven Clan . 120
15.4 Black Lotus . 120
15.5 Dreamer Clan . 121
15.6 Independent Pirates . 121
15.7 Marauders . 121
15.8 Pirate Assemblies . 121

16 Project Thurion 123
16.1 The Facts . 123
16.2 History . 123

16.2.1 Project Thurion . 123
16.2.2 The gestalt consciousness 126
16.2.3 The incident . 127
16.2.4 Government . 127

16.3 Space combat . 128
16.3.1 Summary . 128
16.3.2 Tactics . 128

17 Sovereign Proteron Autarchy 129
17.1 The Facts . 129

17.1.1 House Proteron Society 129
17.1.2 History . 130
17.1.3 Proteron military tactics 133

8 CONTENTS

Chapter 1

Introduction

Welcome to the Naev development manual! This manual is meant to cover
all aspects of Naev development, including both the engine and the lore of
the Naev base scenario known as Sea of Darkness. It is currently a work in
progress. The source code for the manual can be found on the naev github1

with pull requests and issues being welcome.
The document is split into two parts: the first deals with the Naev engine

and how to implement and work with it. The second part deals with the Lore
of the Naev base scenario known as Sea of Darkness.

1.1 What is Naev?

Naev started development circa 20042 as an attempt to make an open source
clone of Escape Velocity (Classic) that would run on Linux. While the engine
itself was meant to be a modern clone of the Escape Velocity engine, the
game scenario itself was meant to be unique. The name NAEV (later to
become Naev) stood for Not Another Escape Velocity. It is now used as a
proper known and has not been changed to confuse users.

Over the time and with the come and go of many contributors, Naev
has grown into an advanced game engine with a complex base scenario
featuring many new mechanics and features not seen in games of the same
genre. While still far from done, since version 0.10.0 plugin support has been
added, and initial work has begun on creating this in-depth guide to Naev
development in hopes that more people join in on the exciting project.

1https://github.com/naev/naev/tree/main/docs/manual
2This is roughly 2 years after the release of Escape Velocity Nova on Mac OS.

9

https://github.com/naev/naev/tree/main/docs/manual

10 CHAPTER 1. INTRODUCTION

Part I

Naev Engine

11

Chapter 2

Introduction to the Naev Engine

While this document does cover the Naev engine in general, many sections
refer to customs and properties specific to the Sea of Darkness default Naev
universe. These are marked with .

2.1 Getting Started

Th Naev engine explanations assume you have access to the Naev data.
This can be either from downloading the game directly from a distribution
platform, or getting directly the naev source code1. Either way it is possible
to modify the game data and change many aspects of the game. It is also
possible to create plugins that add or replace content from the game without
touching the core data to be compatible with updates.

Operating System Data Location

Linux /usr/share/naev/dat
Mac OS X /Applications/Naev.app/Contents/Resources/dat
Windows %ProgramFiles(x86)%\Naev\dat

Most changes will only take place when you restart Naev, although it is
possible to force Naev to reload amission or event with naev.missionReload
or naev.eventReload.

1https://github.com/naev/naev

13

https://github.com/naev/naev

14 CHAPTER 2. INTRODUCTION TO THE NAEV ENGINE

2.2 Plugins

Naev supports arbitrary plugins. These are implemented with a virtual filesys-
tembased onPHYSFS2. The plugin files are therefore ”combined”with existing
files in the virtual filesystem, with plugin files taking priority. So if you add a
mission in a plugin, it gets added to the pool of available missions. However,
if the mission file has the same name as an existing mission, it will over-
write it. This allows the plugin to change core features such as boarding or
communication mechanics or simply add more compatible content.

Plugins are found at the following locations by default, and are automati-
cally loaded if found.

Operating System Data Location

Linux ~/.local/share/naev/plugins
Mac OS X ~/Library/Application Support/org.naev.Naev/plugins
Windows %APPDATA%\naev\plugins

Note that plugins can use either a directory structure or be compressed as
zip files (while still having the appropriate directory structure). For example,
it is possible to add a single mission by creating a plugin with the follow
structure:

plugin.xml
missions/

my_mission.xml

Thiswill cause my_mission.xml to be loaded as an extramission. plugin.xml
is a plugin-specific file which would contain information on plugin name, au-
thors, version, description, compatibility, and so on.

Plugins are described in detail in Chapter 3.

2https://icculus.org/physfs/

https://icculus.org/physfs/

Chapter 3

Plugin Framework

Plugins are user-made collections of files that can add or change content
from Naev. They can be seen as a set of files that can overwrite core Naev
files and add new content such as missions, outfits, ships, etc. They are
implemented with PHYSFS1 that allows treating the plugins and Naev data
as a single ”combined” virtual filesystems. Effectively, Naev will see plugin
files as part of core data files, and use them appropriately.

Plugins are found at the following locations by default, and are automati-
cally loaded if found.

Operating System Data Location

Linux ~/.local/share/naev/plugins
Mac OS X ~/Library/Application Support/org.naev.Naev/plugins
Windows %APPDATA%\naev\plugins

Plugins can either be a directory structure or compressed into a single
zip file which allows for easier distribution.

3.1 Directory Structure

Naev plugins and data use the same directory structure. It is best to open up
the original data to see how everything is laid. For completeness, the main
directories are described below:

• ai/: contains the different AI profiles and their associated libraries.
• asteroids/: contains the different asteroid types and groups in differ-
ent directories.

• commodities/: contains all the different commodity files.

1https://icculus.org/physfs/

15

https://icculus.org/physfs/

16 CHAPTER 3. PLUGIN FRAMEWORK

• damagetype/: contains all the potential damage types.
• difficulty/: contains the different difficulty settings.
• effects/: contains information about effects that can affect ships.
• events/: contains all the events.
• factions/: contains all the factions and their related Lua functionality.
• glsl/: contains all the shaders. Some are critical for basic game
functionality.

• gui/: contains the different GUIs
• map_decorator/: contains the information of what images to render on
the map.

• missions/: contains all the missions.
• outfits/: contains all the outfits.
• scripts/: this is an optional directory that contains all libraries and
useful scripts by convention. It is directly appended to the Lua path, so
you can require files in this directory directly without having to prepend
scripts..

• ships/: contains all the ships.
• slots/: contains information about the different ship slot types.
• snd/: contains all the sound and music.
• spfx/: contains all the special effects. Explosions are required by the
engine and can not be removed.

• spob/: contains all the space objects (planets, stations, etc.).
• spob_virtual/: contains all the virtual space objects. These mainly
serve to modify the presence levels of factions in different systems
artificially.

• ssys/: contains all the star systems.
• tech/: contains all the tech structures.
• trails/: contains all the descriptions of ship trails that are available
and their shaders.

• unidiff/: contains all the universe diffs. These are used to create
modifications to the game data during a playthrough, such as adding
spobs or systems.

In general, recursive iteration is used with all directories. This means
you don’t have to put all the ship xml files directly it ships/, but you can use
subdirectories. Furthermore, in order to avoid collision between plugins, it is
highly recommended to use a subdirectory with the plugin name. So if you
want to define a new ship called Stardragon, you would put the xml file in
ships/my_plugin/stardragon.xml.

Furthermore, the following files play a critical role:
• AUTHORS: contains author information about the game.
• VERSION: contains version information about the game.

3.2. PLUGIN META-DATA PLUGIN.XML 17

• autoequip.lua: used when the player presses autoequip in the equip-
ment window.

• board.lua: used when the player boards a ship.
• comm.lua: used when the player hails a ship.
• common.lua: changes to the Lua language that are applied to all scripts.
• intro: the introduction text when starting a new game.
• loadscreen.lua: renders the loading screen.
• rep.lua: internal file for the console. Do not modify!!
• rescue.lua: script run when the game detects the player is stranded,
such as they have a non-spaceworthy ship and are stuck in an uninhab-
ited spob.

• save_updater.lua: used when updating saves to replace old outfits
and licenses with newer ones.

• start.xml: determines the starting setting, time and such of the game.
Finally, plugins have access to an additional important file known as

plugin.xml that stores meta-data about the plugin itself and compatibility
with Naev versions. This is explained in the next section.

3.2 Plugin Meta-Data plugin.xml

The plugin.xml file is specific to plugins and does not exist in the base game.
A full example is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<plugin name="My Plugin">
<author>Me</author>
<version>1.0</version>
<description>A cool example plugin.</description>
<compatibility>^0\.10\..*</compatibility>
<priority>3</priority>
<source>https://source</source>
</plugin>

The important fields are listed below:
• name: attribute that contains the name of the plugin. This is what the
player and other mods will see and use to reference the plugin.

• author: contains the name of the author(s) of the plugin.
• version: contains the version of the plugin. This can be any arbitrary
string.

• description: contains the description of the plugin. This should be
easy to understand for players when searching for plugins.

• compatibility: contains compatibility information. Specifically, it
must be a regex string that will be tested against the current Naev

18 CHAPTER 3. PLUGIN FRAMEWORK

string. Something like ^0\.10\..* will match any version string that
starts with "0.10.". Please refer to a regular expression guide such as
regexr2 for more information on how to write regex.

• priority: indicates the loading order of the plugin. The default value is
5 and a lower value indicates higher priority. Higher priority allows the
plugin to overwrite files of lower priority plugins. For example, if two
plugins have a file missions/test.lua, the one with the lower priority
would take preference and overwrite the file of the other plugin.

• source: points towhere a newer version can be obtained or downloaded.
This could be a website or other location.

Furthermore, it is also possible to use regex to hide files from the base
gamewith <blacklist> nodes. For example, <blacklist>^ssys/.*\.xml</blacklist>
would hide all the XML files in the ssys directory. This is especially useful
when planning total conversions or plugins that modify significantly the base
game, and you don’t want updates to add new files you have to hide. By using
the appropriate blacklists, you increase compatibility with future versions of
Naev. Furthermore, given the popularity of total conversion-type plugins, you
can use the <total_conversion/> tag to apply a large set of blacklist rules
which will remove all explicit content from Naev. This means you will have to
define at least a star system, a spob, and a flyable ship for the game to run.

In additiona to the blacklist, awhitelist can also be definedwith <whitelist>,
which takes priority over the blacklist. In other words, whitlelist stuff will ig-
nore the blacklist. Total conversions automatically get a few critical files such
as the settings.lua event included, although they can still be overwritten.

3.3 Plugin Repository

Naev has a plugin repository3 which tries to centralize know plugins. To add
your plugin, please create a pull request on the repository. This repository
contains only the minimum information of the plugins necessary to be able
to download and look up the rest of the information.

3.4 Tips and Tricks

This section includes some useful tricks when designing plugins.

2https://regexr.com/
3https://github.com/naev/naev-plugins

https://regexr.com/
https://github.com/naev/naev-plugins

3.4. TIPS AND TRICKS 19

3.4.1 Making Compatible Changes

While plugins can easily overwrite files, there are times you may not wish to
do that, as replacing the same file as another plugin will lead to conflicts. To
avoid replacing files, it is possible to use the Universe Diff (unidiff) system
(TODO add section). Let us consider a motivating example where we want to
simply add an outfit, and add it to an existing tech group, but not replace the
file so it can work with other plugins. This can be done by creating an event
that automatically applies the unidiff when the player loads the game.

Assume that we have a tech group called ”Base Tech Group”, and an outfit
called ”My Outfit”. We wish to add ”My Outfit” to ”Base Tech Group” without
replacing the file. To do this, first we define the unidiff that adds ”My Outfit”
to ”Base Tech Group” as below:

<?xml version="1.0" encoding="UTF-8"?>
<unidiff name="my_plugin_unidiff">
<tech name="Base Tech Group">
<add>My Outfit</add>
</tech>
</unidiff>

The above file should be saved to unidiff/my_plugin_unidiff.xml, and
will simply add the ”My Outfit” to ”Base Tech Group”. However, this unidiff will
be disabled by default, so we’ll have to enable it with an event such as below:

--[[
<?xml version='1.0' encoding='utf8'?>
<event name="My Plugin Start">
<location>load</location>
<chance>100</chance>
</event>
--]]
function create ()

local diffname = "my_plugin_unidiff"
if not diff.isApplied(diffname) then

diff.apply(diffname)
end
evt.finish()

end

The above file should be saved somewhere in events/, such as events/my_plugin_start.lua,
and will simply apply the unidiff "my_plugin_unidiff" if it is not active, thus
adding ”My Outfit” to ”Base Tech Group” without overwriting the file.

The same technique can be done to add new systems or any other feature
supported by the unidiff system (see section TODO). For example, you can
add new systems normally, but then add the jumps to existing systems in a
unidiff so you do not have to overwrite the original files.

20 CHAPTER 3. PLUGIN FRAMEWORK

3.5 Extending Naev Functionality

This section deals with some of the core functionality in Naev that can be
extended to support plugins without the need to be overwritten. Extending
Naev functionality, in general, relies heavily on the Lua4 using custom bindings
that can interact with the Naev engine.

A full overview of the Naev Lua API can be found at naev.org/api5 and is
out of the scope of this document.

3.5.1 Adding News

News is controlled by the dat/events/news.lua6 script. This script looks in
the dat/events/news/7 for news data that can be used to create customized
news feeds for the player. In general, all you have to do is created a specially
formatted news file and chuck it in the directory for it to be used in-game.

When the player loads a game, the news script goes over all the news data
files and loads them up. Afterwards, each tim ethe player lands, it creates a
dynamic list of potential news based on the faction and characteristics of
the landed spob. Afterwards, it randomly samples from the news a number
of times based on certain criteria. News is not refreshed entirely each time
the player lands, instead it is slowly updated over time based on a diversity
of criteria. When new news is needed, the script samples from the dynamic
list to create it. Thus it tends to slowly evolve as the player does things.

Let us take a look at how the news data files have to be formatted.
At the core, each news data file has to return a function that returns 4

values:
1. The name of the faction the news should be displayed at, or "Generic"

for all factionts with the generic tag.
2. The headers to use for the faction. Set to nil if you don’t want to add

more header options.
3. The greetings to use for the faction. Set to nil if you don’t want to add

more greeting options.
4. A list of available articles for the faction.
Let us look at a minimal working example with all the features:

local head = {
_("Welcome to Universal News Feed.")

}

4https://www.lua.org/
5https://naev.org/api
6https://github.com/naev/naev/blob/main/dat/events/news.lua
7https://github.com/naev/naev/tree/main/dat/events/news

https://www.lua.org/
https://naev.org/api
https://github.com/naev/naev/blob/main/dat/events/news.lua
https://github.com/naev/naev/tree/main/dat/events/news

3.5. EXTENDING NAEV FUNCTIONALITY 21

local greeting = {
_("Interesting events from around the universe."),

}
local articles = {

{
head = N_([[Naev Dev Manual Released!]]),
body = _([[The Naev Development Manual was released after a long

time in development. "About time" said an impatient user.]]),
},

}
return function ()

return "Independent", head, greeting, articles
end

The above example delares 3 tables corresponding to the news header
(head), news greeting (greeting), and articles (articles). In this simple case,
each table only has a single element, but it can have many more which will be
chosen at random. The script returns a function at the bottom, that returns the
faction name, "Independent" in this case, and the four tables. The function
will be evaluated each time the player lands and news has to be generated,
and allows you to condition what articles are generated based on all sorts of
criteria.

Most of the meat of news lies in the articles. Each article is represented
as a table with the following elements:

1. head: Title of the news. Must be an untranslated string (wrap with N_())
2. body: Body text of the news. Can be either a function or a string. In

case of being a function, it gets evaluated.
3. tag (optional): Used to determine if a piece of news is repeated. De-

faults to the head, but you can define multiple news with the same tag
to make them mutually exclusive.

4. priority (optional): Determines howhigh up the news is shown. Smaller
values prioritize the news. Defaults to a value of 6.

As an alternative, it is also possible to bypass the news script entirely
and directly add news with news.add8. This can be useful when adding news
you want to appear directly as a result of in-game actions and not have it
randomly appear. However, do note that not all players read the news and it
can easily be missed.

3.5.2 Adding Bar NPCs

TODO

8https://naev.org/api/modules/news.html#add

https://naev.org/api/modules/news.html#add

22 CHAPTER 3. PLUGIN FRAMEWORK

3.5.3 Adding Derelict Events

TODO add engine support

3.5.4 Adding Points of Interest

TODO

3.5.5 Adding Personalities

TODO

Chapter 4

Missions and Events

Naev missions and events are written in the Lua Programming Language1. In
particular, they use version 5.1 of the Lua programming language. While both
missions and events share most of the same API, they differ in the following
ways:

• Missions: Always visible to the player in the info window. The player
can also abort them at any time. Missions are saved by default. Have
exclusive access to the misn library and are found in dat/missions/.

• Events: Not visible or shown to the player in any way, however, their
consequences can be seen by the player. By default, they are not saved
to the player savefile. If you want the event to be saved you have to
explicitly do it with evt.save(). Have exclusive access to the evt library
and are found in dat/events/.

The general rule of thumbwhen choosing which tomake is that if you want
the player to have control, use a mission, otherwise use an event. Example
missions include cargo deliveries, system patrols, etc. On the other hand,
most events are related to game internals and cutscenes such as the save
game updater event (dat/events/updater.lua2) or news generator event
(dat/events/news.lua3).

A full overview of the Naev Lua API can be found at naev.org/api4 and is
out of the scope of this document.

1https://www.lua.org
2https://github.com/naev/naev/blob/main/dat/events/updater.lua
3https://github.com/naev/naev/blob/main/dat/events/news.lua
4https://naev.org/api

23

https://www.lua.org
https://github.com/naev/naev/blob/main/dat/events/updater.lua
https://github.com/naev/naev/blob/main/dat/events/news.lua
https://naev.org/api

24 CHAPTER 4. MISSIONS AND EVENTS

4.1 Mission Guidelines

This following section deals with guidelines for getting missions included
into the official Naev repository5. These are rough guidelines and do not
necessarily have to be followed exactly. Exceptions can be made depending
on the context.

1. Avoid stating what the player is feeling or making choices for them.
The player should be in control of themselves.

2. There should be no penalties for aborting missions. Let the player
abort/fail and try again.

4.2 Getting Started

Missions and events share the same overall structure in which there is a
large Lua comment at the top containing all sorts of meta-data, such as
where it appears, requirements, etc. Once the mission or event is started, the
obligatory create function entry point is run.

Let us start by writing a simple mission header. This will be enclosed by
long Lua comments --[[and --]] in the file. Below is our simple header.

--[[
<mission name="My First Mission">
<unique />
<avail>
<chance>50</chance>
<location>Bar</location>
</avail>
</mission>
--]]

The mission is named ”My First Mission” and has a 50% chance of ap-
pearing in any spaceport bar. Furthermore, it is marked unique so that once
it is successfully completed, it will not appear again to the same player. For
more information on headers refer to Section 4.3.1.

Now, we can start coding the actual mission. This all begins with the
create () function. Let us write a simple one to create an NPC at the Space-
port Bar where the mission appears:

function create ()
misn.setNPC(_("A human."),

"neutral/unique/youngbusinessman.webp",
_("A human wearing clothes."))

end

5https://github.com/naev/naev

https://github.com/naev/naev

4.2. GETTING STARTED 25

The create function in this case is really simple, it only creates a single
NPC with misn.setNPC. Please note that only a single NPC is supported
with misn.setNPC, if you want to use more NPC you would have to use
misn.npcAdd which is much more flexible and not limited to mission givers.
There are two important things to note:

1. All human readable text is enclosed in _() for translations. In principle
you should always use _() to enclose any text meant for the user to
read, which will allow the translation system to automatically deal with
it. For more details, please refer to Section 4.3.5.

2. There is an image defined as a string. In this case, this refers to an
image in gfx/portraits/. Note that Naev uses a virtual filesystem and
the exact place of the file may vary depending on where it is set up.

With that set up, the mission will now spawn an NPC with 50

local vntk = require "vntk"
local fmt = require "format"

local reward = 50e3 -- This is equivalent to 50000, and easier to read

function accept ()
-- Make sure the player has space
if player.pilot():cargoFree() < 1 then

vntk.msg(_("Not Enough Space"),
_("You need more free space for this mission!"))

return
end

-- We get a target destination
mem.dest, mem.destsys = spob.getS("Caladan")

-- Ask the player if they want to do the mission
if not vntk.yesno(_("Apples?"),

fmt.f(_("Deliver apples to {spb} ({sys})?"),
{spb=mem.dest,sys=mem.destsys})) then

-- Player did not accept, so we finish here
vntk.msg(_("Rejected"),_("Your loss."))
misn.finish(false) -- Say the mission failed to complete
return

end

misn.accept() -- Have to accept the mission for it to be active

-- Set mission details
misn.setTitle(_("Deliver Apples"))
misn.setReward(fmt.credits(reward))
local desc = fmt.f(_("Take Apples to {spb} ({sys})."),

{spb=mem.dest,sys=mem.destsys}))
misn.setDesc(desc)

26 CHAPTER 4. MISSIONS AND EVENTS

-- On-screen display
misn.osdCreate(_("Apples"), { desc })

misn.cargoAdd("Food", 1) -- Add cargo
misn.markerAdd(mem.dest) -- Show marker on the destination

-- Hook will trigger when we land
hook.land("land")

end

This time it’s a bit more complicated than before. Let us try to break it
down a bit. The first line includes the vntk library, which is a small wrapper
around the vn Visual Novel library (explained in Section 4.3.10). This allows
us to show simple dialogues and ask the player questions. We also include
the format library to let us format arbitrary text, and we also define the local
reward to be 50,000 credits in exponential notation.

The function contains of 3 main parts:
1. We first check to see if the player has enough space for the apples with

player.pilot():cargoFree() and display a message and return from
the function if not.

2. We then ask the player if then ask the player if they want to deliver
apples to Caladan and if they don’t, we give a message and return from
the function.

3. Finally, we accept the mission, adding it to the player’s active mission
list, set the details, add the cargo to the player, and define a hook
on when the player lands to run the final part of the mission. Func-
tions like misn.markerAdd add markers on the spob the player has to
go to, making it easier to complete the mission. The On-Screen Dis-
play (OSD) is also set with the mission details to guide the player with
misn.osdCreate.

Some important notes.
• We use fmt.f to format the strings. In this case, the {spb} will be
replaced by the spb field in the table, which corresponds to the name of
the mem.dest spob. This is further explained in Section ??.

• Variables don’t get saved unless they are in the mem table. This table
gets populated again every time the save game gets loaded. More
details in Section 4.3.2.

• You have to pass function names as strings to the family of hook.*
functions. More details on hooks in Section 4.3.4.

Now this gives us almost the entirety of the mission, but a last crucial
component is missing: we need to reward the player when they deliver the
cargo to Caladan. We do this by exploiting the hook.land that makes it so our
defined land function gets called whenever the player lands. We can define

4.3. BASICS 27

one as follows:
local neu = require "common.neutral"
function land ()

if spob.cur() ~= mem.dest then
return

end

vn.msg(_("Winner"), _("You win!"))
neu.addMiscLog(_("You helped deliver apples!"))
player.pay(reward)
misn.finish(true)

end

We can see it’s very simple. It first does a check to make sure the landed
planet spob.cur() is indeed the destination planet mem.dest. If not, it returns,
but if it is, it’ll display a message, add a message to the ship log, pay the
player, and finally finish the mission with misn.finish(true). Remember
that since this is defined to be a unique mission, once the mission is done it
will not appear again to the same player.

That concludes our very simple introduction to mission writing. Note that
it doesn’t handle things like playing victory sounds, nor other more advanced
functionality. However, please refer to the full example in Section 4.6 that
covers more advanced functionality.

4.3 Basics

In this section we will discuss basic and fundamental aspects of mission
and event developments that you will have to take into account in almost all
cases.

4.3.1 Headers

Headers contain all the necessary data about a mission or event to determine
where and when they should be run. They are written as XML code embedded
in a Lua comment at the top of each individual mission or event. In the case
a Lua file does not contain a header, it is ignored and not loaded as a mission
or event.

The header has to be at the top of the file starting with --[[and ending
with --]] which are long Lua comments with newlines. A full example is
shown below using all the parameters, however, some are contradictory in
this case.

--[[

28 CHAPTER 4. MISSIONS AND EVENTS

<?xml version='1.0' encoding='utf8'?>
<mission name="Mission Name">
<unique />
<chance>5</chance>
<location>Bar</location>
<chapter>[^0]</chapter>
<spob>Caladan</spob>
<faction>Empire</faction>
<system>Delta Pavonis</system>
<cond>player.credits() > 10e3</cond>
<done>Another Mission</done>
<priority>4</priority>
<tags>
<some_random_binary_tag />
</tags>
<notes />
</mission>
--]]

Let us go over the different parameters. First of all, either a <mission>
or <event> node is necessary as the root for either missions (located in
dat/missions/) or events (located in dat/events/). The name attribute has
to be set to a unique string and will be used to identify the mission.

Next it is possible to identify mission properties. In particular, only the
<unique /> property is supported, which indicates the mission can only be
completed once. It will not appear again to the same player.

The header includes all the information about mission availability. Most
are optional and ignored if not provided. The following nodes can be used to
control the availability:

• chance: required field. indicates the chance that the mission appears.
For values over 100, the whole part of dividing the value by 100 indicates
how many instances can spawn, and the remainder is the chance of
each instance. So, for example, a value of 320 indicates that 3 instances
can spawn with 20% each.

• location: required field. indicates where the mission or event can start.
It can be one of none, land, enter, load, computer, or bar. Note that
not all are supported by both missions and events. More details will be
discussed later in this section.

• unique: the presence of this tag indicates themission or event is unique
and will not appear again once fully completed.

• chapter: indicateswhat chapter it can appear in. Note that this is regular
expression-powered. Something like 0 will match chapter 0 only, while
you can write [01] to match either chapter 0 or 1. All chapters except
0 would be [^0], and such. Please refer to a regular expression guide

4.3. BASICS 29

such as regexr6 for more information on how to write regex.
• faction: must match a faction. Multiple can be specified, and only one
has to match. In the case of land, computer, or bar locations it refers
to the spob faction, while for enter locations it refers to the system
faction.

• spob: must match a specific spob. Only used for land, computer, and
bar locations. Only one can be specified.

• system: must match a specific system. Only used for enter location
and only one can be specified.

• cond: arbitrary Lua conditional code. The Lua code must return a
boolean value. For example player.credits() > 10e3wouldmean
the player having more than 10,000 credits. Note that since this is XML,
you have to escape < and > with < and >, respectively. Multiple
expressions can be hooked with and and or like regular Lua code. If the
code does not contain any return statements, return is prepended to
the string.

• done: indicates that the mission must be done. This allows to create
mission strings where one starts after the next one.

• priority: indicates what priority the mission has. Lower priority makes
the mission more important. Missions are processed in priority order,
so lower priority increases the chance ofmissions being able to perform
claims. If not specified, it is set to the default value of 5.

The valid location parameters are as follows:

Location Event Mission Description

none X X Not available anywhere.
land X X Run when player lands
enter X X Run when the player enters a system.
load X Run when the game is loaded.
computer X Available at mission computers.
bar X Available at spaceport bars.

Note that availability differs between events and missions. Furthermore,
there are two special cases for missions: computer and bar that both support
an accept function. In the case of the mission computer, the accept function
is run when the player tries to click on the accept button in the interface. On
the other hand, the spaceport bar accept function is called when the NPC is
approached. This NPCmust be definedwith misn.setNPC to be approachable.

Also notice that it is also possible to define arbitrary tags in the <tags>
node. This can be accessed with player.misnDoneList() and can be used

6https://regexr.com/

https://regexr.com/

30 CHAPTER 4. MISSIONS AND EVENTS

for things such as handling faction standing caps automatically.
Finally, there is a <notes> section that contains optional meta data about

the meta data. This is only used by auxiliary tools to create visualizations of
mission maps.

Example: Cargo Missions

Cargo missions appear at the mission computer in a multitude of different
factions. Since they are not too important, they have a lower than default
priority (6). Furthermore, they have 9 independent chances to appear, each
with 60% chance. This is written as <chance>960</chance>. The full example
is shown below:

--[[
<?xml version='1.0' encoding='utf8'?>
<mission name="Cargo">
<priority>6</priority>
<chance>960</chance>
<location>Computer</location>
<faction>Dvaered</faction>
<faction>Empire</faction>
<faction>Frontier</faction>
<faction>Goddard</faction>
<faction>Independent</faction>
<faction>Sirius</faction>
<faction>Soromid</faction>
<faction>Za'lek</faction>
<notes>
<tier>1</tier>
</notes>
</mission>
--]]

Example: Antlejos

Terraforming antlejos missions form a chain. Each mission requires the
previous one and are available at the same planet (Antlejos V) with 100%
chance. The priority is slightly lower than default to try to ensure the claims
get through. Most missions trigger on Land (<location>Land</location>)
because Antlejos V does not have a spaceport bar at the beginning. The full
example is shown below:

--[[
<?xml version='1.0' encoding='utf8'?>
<mission name="Terraforming Antlejos 3">
<unique />

4.3. BASICS 31

<priority>4</priority>
<chance>100</chance>
<location>Land</location>
<spob>Antlejos V</spob>
<done>Terraforming Antlejos 2</done>
<notes>
<campaign>Terraforming Antlejos</campaign>
</notes>
</mission>
--]]

Example: Taiomi

Next is an example of a unique event. The Finding Taiomi event has a 100%
of appearing in the Bastion system outside of Chapter 0. It triggers automat-
ically when entering the system (<location>enter</location>).

--[[
<?xml version='1.0' encoding='utf8'?>
<event name="Finding Taiomi">
<location>enter</location>
<unique />
<chance>100</chance>
<cond>system.cur() == system.get("Bastion")</cond>
<chapter>[^0]</chapter>
<notes>
<campaign>Taiomi</campaign>
</notes>
</event>
--]]

4.3.2 Memory Model

By default, variables in Lua scripts are not saved when the player saves the
game. This means that all the values you have set up will be cleared if the
player saves and loads. This can lead to problems with scripts that do the
following:

local dest

function create ()
dest = spob.get("Caladan")

-- ...

hook.land("land")
end

32 CHAPTER 4. MISSIONS AND EVENTS

function land ()
if spob.cur() == dest then -- This is wrong!

-- ...
end

end

In the above script, a variable called dest is created, and when themission
is created, it gets set to spob.get("Caladan"). Afterwards, it gets used in
land which is triggered by a hook when the player lands. For this mission, the
value dest will be set as long as the player doesn’t save and load. When the
player saves and loads, the value dest gets set to nil by default in the first
line. However, upon loading, the create function doesn’t get run again, while
the hook is still active. This means that when the player lands, spob.cur()
will be compared with dest will not have been set, and thus always be false.
In conclusion, the player will never be able to finish the mission!

How do we fix this? The solution is the mission/event memory model.
In particular, all mission / event instances have a table that gets set called
mem. This table has the particular property of being persistent, i.e., even if
the player saves and loads the game, the contents will not change! We can
then use this table and insert values to avoid issues with saving and loading
games. Let us update the previous code to work as expected with saving and
loading.

function create ()
mem.dest = spob.get("Caladan")

-- ...

hook.land("land")
end

function land ()
if spob.cur() == mem.dest then

-- ...
end

end

We can see the changes are minimal. We no longer declare the dest
variable, and instead of setting and accessing dest, we use mem.dest, which
is the dest field of the mem persistent memory table. With these changes, the
mission is now robust to saving and loading!

It is important to note that almost everything can be stored in the mem
table, and this includes other tables. However, make sure to not create loops
or it will hang the saving of the games.

The most common use of the persistent memory table mem is variables
that keep track of the mission progress, such as if the player has delivered

4.3. BASICS 33

cargo or has talked to a certain NPC.

4.3.3 Mission Variables

Mission variables allow storing arbitrary variables in save files. Unlike the
mem per-mission/event memory model, these are per-player and can be read
and written by any Lua code. The API is available as part of the varmodule7.

The core of the varmodule is three functions:
• var.peek(varname): allows to obtain the value of a mission variable
called varname. If it does not exist it returns nil.

• var.push(varname, value): creates a newmission variable varname
or overwrites an existing mission variable varname if it exists with the
value value. Note that not all data types are supported, but many are.

• var.pop(varname): removes a mission variable.
It is common to use mission variables to store outcomes in mission

strings that affect other missions or events. Since they can also be read by
any Lua code, they are useful in <cond> header statements too.

Supported variable types are number, boolean, string, and time. If you
want to pass systems and other data, you have to pass it via untranslated
name :nameRaw() and then use the corresponding .get() function to convert
it to the corresponding type again.

4.3.4 Hooks

Hooks are the basic way missions and events can interact with the game.
They are accessed via the hook.* API and basically serve the purpose of
binding script functions to specific in-game events or actions. A full list of
the hook API is available here8 and the API is always available in missions
and events. Hooks are saved and loaded automatically.

The basics to using hooks is as follows:
function create ()

-- ...

hook.land("land")
end

function land ()
-- ...

end

7https://naev.org/api/modules/var.html
8https://naev.org/api/modules/hook.html

https://naev.org/api/modules/var.html
https://naev.org/api/modules/hook.html

34 CHAPTER 4. MISSIONS AND EVENTS

In this example, at the end of the create function, the local function land
is bound to the player landing with hook.land. Thus, whenever the player
lands, the script function land will be run. All hook functions return a hook
ID that can be used to remove the hook with hook.rm. For example, we can
write a slightly more complicated example as such:

function create ()
-- ...

mem.hook_land = hook.land("land")
mem.hook_enter = hook.enter("enter")

end

function land ()
-- ...

end

function enter ()
hook.rm(mem.hook_land)
hook.rm(mem.hook_enter)

end

The above example is setting up a land hook when the player lands, and
an enter hook, which activates whenever the player enters a system by either
taking off or jumping. Both hooks are stored in persistent memory, and are
removed when the enter function is run when the player enters a system.

Each mission or event can have an infinite number of hooks enabled.
Except for timer and safe hooks, hooks do not get removed when run.

Timer Hooks

Timer hooks are hooks that get run once when a certain amount of real
in-game time has passed. Once the hook is triggered, it gets removed auto-
matically. If you wish to repeat a function periodically, you have to create a
new timer hook. A commonly used example is shown below.

function create ()
-- ...

hook.enter("enter")
end

function enter ()
-- ...

hook.timer(5, "dostuff")
end

4.3. BASICS 35

function dostuff ()
if condition then

-- ...
return

end
-- ...
hook.timer(5, "dostuff")

end

In this example, an enter hook is created and triggered when the player
enters a system by taking off or jumping. Then, in the enter function, a 5
second timer hook is started that runs the dostuff function when the time
is up. The dostuff function then checks a condition to do something and
end, otherwise it repeats the 5 second hook. This system can be used to, for
example, detect when the player is near a pilot or position, or display periodic
messages.

Timer hooks persist even when the player lands and takes off. If you
wish to clear them, please use hook.timerClear(), which will remove all the
timers created by the mission or event calling the function. This can be useful
in combination with hook.enter.

Pilot Hooks

When it comes to pilots, hooks can also be used. However, given that pilots
are not saved, the hooks are not saved either. The hooks can be made to
be specific to a particular pilot, or apply to any pilot. In either case, the pilot
triggering the hook is passed as a parameter. An illustrative example is shown
below:

function enter ()
-- ...

local p = pilot.add("Llama", "Independent")
hook.pilot(p, "death", "pilot_died")

end

function pilot_died(p)
-- ...

end

In the above example, when the player enters a system with the enter
function, a new pilot p is created, and a "death" hook is set on that pilot. Thus,
when the pilot p dies, the pilot_dead function will get called. Furthermore,
the pilot_died function takes the pilot that died as a parameter.

There are other hooks for a diversity of pilot actions that are documented

36 CHAPTER 4. MISSIONS AND EVENTS

in the official API documentation9, allowing for full control of pilot actions.

4.3.5 Translation Support

Naev supports translation through Weblate10. However, in order for transla-
tions to be used you have to mark strings as translatable. This is done with
a gettext11 compatible interface. In particular, the following functions are
provided:

• _(): This function takes a string, marks it as translatable, and returns
the translated version.

• N_(): This function takes a string, marks it as translatable, however, it
returns the untranslated version of the string.

• n_(): Takes two strings related to a number quantity and return the
translated version that matches the number quantity. This is because
some languages translate number quantities differently. For example
”1 apple”, but ”2 apples”.

• p_(): This function takes two strings, the first is a context string,
and the second is the string to translate. It returns the translated
string. This allows to disambiguate same strings based on context
such as p_("main menu", "Close") and p_("some guy", "Close"
). In this case "Close" can be translated differently based on the con-
text strings.

In general, you want to use _() and n_() to envelop all strings that are
being shown to the player, which will allow for translations to work without
extra effort. For example, when defining a new mission you want to translate
all the strings as shown below:

misn.setTitle(_("My Mission"))
misn.setDesc(_("You have been asked to do lots of fancy stuff for a

very fancy individual. How fancy!"))
misn.setReward(_("Lots of good stuff!"))

Note that _() and friends all assume that you are inputting strings in
English.

It is important to note that strings not shown to the player, e.g., strings
representing faction names or ship names, do not need to be translated! So
when adding a pilot you can just use directly the correct strings for the ship
and faction (e.g., "Hyena" and "Mercenary"):

pilot.add("Hyena", "Mercenary", nil, _("Cool Dude"))

9https://naev.org/api/modules/hook.html#pilot
10https://hosted.weblate.org/projects/naev/naev/
11https://www.gnu.org/software/gettext/

https://naev.org/api/modules/hook.html#pilot
https://hosted.weblate.org/projects/naev/naev/
https://www.gnu.org/software/gettext/

4.3. BASICS 37

Note that the name (Cool Dude in this case) does have to be translated!
For plurals you have to use n_() given that not all languages pluralize like

in English. For example, if you want to indicate how many pirates are left, you
could do something like:

player.msg(string.format(n_(
""```

The above example says how many pirates are left based on the value of
the variable `left`. In the case there is a single pirate left, the
singular form should be used in English, which is the first
parameter. For other cases, the plural form is used. The value of
the variable `left` determines which is used based on translated
language. Although the example above uses `string.format` to display
the number value for illustrative purposes, it is recommended to
format text with the `format` library explained below.

Formatting Text
\label{sec:misn-basic-fmt}

An important part of displaying information to the player is formatting
text. While `string.format` exists, it is not very good for
translations, as the Lua version can not change the order of
parameters unlike C. For this purpose, we have prepared the `format`
library, which is much more intuitive and powerful than
string.format. A small example is shown below:

```lua
local fmt = require "format"

function create ()
-- ...
local spb, sys = spob.getS( "Caladan" )
local desc = fmt.f( _("Take this cheese to {spb} ({sys}), {name}."),

{ spb=spb, sys=sys, name=player.name() } )
misn.setDesc( desc )

end

Let us break down this example. First, we include the library as fmt. This
is the recommended way of including it. Afterwards, we run fmt.f which
is the main formatting function. This takes two parameters: a string to be
formatted, and a table of values to format with. The string contains substrings
of the form "{foo}", that is, a variable name surrounded by { and }. Each of
these substrings is replaced by the corresponding field in the table passed as
the second parameter, which are converted to strings. So, in this case, {spb}
gets replaced by the value of table.spb which in this case is the variable spb
that corresponds to the Spob of Caladan. This gets converted to a string,
which in this case is the translated name of the planet. If any of the substrings



38 CHAPTER 4. MISSIONS AND EVENTS

are missing and not found in the table, it will raise an error.
There are additional useful functions in the format library. In particular

the following:
• format.number: Converts a non-negative integer into a human readable
number as a string. Gets rounded to the nearest integer.

• format.credits: Displays a credit value with the credit symbol ¤.
• format.reward: Used for displaying mission rewards.
• format.tonnes: Used to convert tonne values to strings.
• format.list: Displays a list of values with commas and the word ”and”.
For example fmt.list{"one", "two", "three"} returns "one, two,
and three".

• format.humanize: Converts a number string to a human readable rough
string such as "1.5 billion".

More details can be found in the generated documentation12.

4.3.6 Colouring Text

All string printing functions in Naev accept special combinations to change
the colour. This will work whenever the string is shown to the player. In
particular, the character # is used for a prefix to set the colour of text in a
string. The colour is determined by the character after #. In particular, the
following are valid values:

Symbol Description

#0 Resets colour to the default value.
#r Red colour.
#g Green colour.
#b Blue colour.
#o Orange colour.
#y Yellow colour.
#w White colour.
#p Purple colour.
#n Grey colour.
#F Colour indicating friend.
#H Colour indicating hostile.
#N Colour indicating neutral.
#I Colour indicating inert.
#R Colour indicating restricted.

Multiple colours can be used in a string such as "It is a #ggood#0

12https://naev.org/api/modules/format.html

https://naev.org/api/modules/format.html


4.3. BASICS 39

#rmonday#0!". In this case, the word "good" is shown in green, and "monday"
is shown in red. The rest of the text will be shown in the default colour.

While it is possible to accent and emphasize text with this, it is important
to not go too overboard, as it can difficult translating. When possible, it is
also best to put the colour outside of the string being translated. For example
_("#rred#0") should be written as "#r".._("red").."#0".

4.3.7 System Claiming

One important aspect of mission and event development are system claiming.
Claims serve the purpose of avoiding collisions between Lua code. For exam-
ple, pilot.clear() allows removing all pilots from a system. However, say
that there are two events going on in a system. They both run pilot.clear()
and add some custom pilots. What will happen then, is that the second event
to run will get rid of all the pilots created from the first event, likely resulting
in Lua errors. This is not what we want is it? In this case, we would want
both events to try to claim the system and abort if the system was already
claimed.

Systems can be claimed with either misn.claim or evt.claim depending
on whether they are being claimed by a mission or an event. A mission
or event can claim multiple systems at once, and claims can be exclusive
(default) or inclusive. Exclusive claims don’t allow any other system to claim
the system, while inclusive claims can claim the same system. In general, if
you use things like pilot.clear() you should use exclusive claims, while if
you don’t mind if other missions / events share the system, you should use
inclusive claims. You have to claim all systems that your mission uses to
avoid collisions!

Let us look at the standard way to use claims in a mission or event:

function create ()
if not misn.claim( {system.get("Gamma Polaris")} ) then

misn.finish(false)
end

-- ...
end

The above mission tries to claim the system "Gamma Polaris" right away
in the create function. If it fails and the function returns false, the mission
then finishes unsuccessfully with misn.finish(false). This will cause the
mission to only start when it can claim the "Gamma Polaris" system and
silently fail otherwise. You can pass more systems to claim them, and by
default they will be exclusive claims.



40 CHAPTER 4. MISSIONS AND EVENTS

Say our event only adds a small derelict in the system and we don’t mind
it sharing the system with other missions and events. Then we can write the
event as:

function create ()
if not evt.claim( {system.get("Gamma Polaris")}, true ) then

evt.finish(false)
end

-- ...
end

In this case, the second parameter is set to true which indicates that this
event is trying to do an inclusive claim. Again, if the claiming fails, the event
silently fails.

Claims can also be tested in an event/mission-neutral waywith naev.claimTest.
However, this can only test the claims. Only misn.claim and evt.claim can
enforce claims for missions and events, respectively.

As missions and events are processed by priority, make sure to give
higher priority to those that you want to be able to claim easier. Otherwise,
they will have difficulties claiming systems and may never appear to the
player. Minimizing the number of claims and cutting up missions and events
into smaller parts is also a way to minimize the amount of claim collisions.

4.3.8 Mission Cargo

Cargo given to the player by missions using misn.cargoAdd is known as
Mission Cargo. This differs from normal cargo in that only the player’s ship
can carry it (escorts are not allowed to), and that if the player jettisons it,
the mission gets aborted. Missions and events can still add normal cargo
through pilot.cargoAdd or player.fleetCargoAdd, however, only missions
can have mission cargo. It is important to note thatwhen the mission finishes,
all associated mission cargos of the mission are also removed!

The API for mission cargo is fairly simple and relies on three functions:
• misn.cargoAdd: takes a commodity or string with a commodity name,
and the amount to add. It returns the id of the mission cargo. This ID
can be used with the other mission cargo functions.

• misn.cargoRm: takes a mission cargo ID as a parameter and removes
it. Returns true on success, false otherwise.

• misn.cargojet: same as misn.cargoRm, but it jets the cargo into space
(small visual effect).



4.3. BASICS 41

Custom Commodities

Commodities are generally defined in dat/commodities/, however, it is a
common need for a mission to have custom cargo. Instead of bloating
the commodity definitions, it is possible to create arbitrary commodities
dynamically. Once created, they are saved with the player, but will disappear
when the player gets rid of them. There are two functiosn to handle custom
commodities:

• commodity.new: takes the name of the cargo, description, and an op-
tional set of parameters and returns a new commodity. If it already
exist, it returns the commodity with the same name. It is important to
note that you have to pass untranslated strings. However, in order to
allow for translation, they should be used with N_().

• commodity.illegalto: makes a custom commodity illegal to a faction,
and takes the commodity and a faction or table of factions to make the
commodity illegal to as parameters. Note that this function only works
with custom commodities.

An full example of adding a custom commodity to the player is as follows:
local c = commodity.new( N_("Smelly Cheese"), N_("This cheese smells

really bad. It must be great!") )
c:illegalto( {"Empire", "Sirius"} )
mem.cargo_id = misn.cargoAdd( c, 1 )
-- Later it is possible to remove the cargo with misn.cargoRm(

mem.cargo_id )

4.3.9 Ship Log

The Ship Log is a framework that allows recording in-game events so that
the player can easily access them later on. This is meant to help players that
haven’t logged in for a while or have forgotten what they have done in their
game. The core API is in the shiplogmodule13 and is a core library that is
always loaded without the need to require. It consists of two functions:

• shiplog.create: takes three parameters, the first specifies the id of
the log (string), the second the name of the log (string, visible to player),
and the third is the logtype (string, visible to player and used to group
logs).

• shiplog.append: takes two parameters, the first specifies the id of the
log (string), and second is themessage to append. The ID shouldmatch
one created by shiplog.create.

The logs have the following hierarchy: logtype → log name → message. The
logtype and log name are specified by shiplog.create and the messages

13https://naev.org/api/modules/shiplog.html

https://naev.org/api/modules/shiplog.html


42 CHAPTER 4. MISSIONS AND EVENTS

are added with shiplog.append. Since, by default, shiplog.create doesn’t
overwrite existing logs, it’s very common to write a helper log function as
follows:

local function addlog( msg )
local logid = "my_log_id"
shiplog.create( logid, _("Secret Stuff"), _("Neutral") )
shiplog.append( logid, msg )

end

Youwould use the function to quickly add logmessageswith addlog(_("This
is a message relating to secret stuff.")). Usually logs are addedwhen
important one-time things happen during missions or when they are com-
pleted.

4.3.10 Visual Novel Framework

The Visual Novel framework is based on the Love2D API and allows for
displaying text, characters, and other effects to the player. It can be thought
of as a graph representing the choices and messages the player can engage
with. The core API is in the vnmodule14.

The VN API is similar to existing frameworks such as Ren’Py15, in which
conversations are divided into scenes with characters. In particular, the
flow of engaging the player with the VN framework consists roughly of the
following:

1. Clear internal variables (recommended)
2. Start a new scene
3. Define all the characters that should appear in the scene (they can still

be added and removed in the scene with vn.appear and vn.disappear)
4. Run the transition to make the characters and scene appear
5. Display text
6. Jump to 2. as needed or end the vn
For most purposes, all you will need is a single scene, however, you are

not limited to that. The VN is based around adding nodes which represent
things like displaying text or giving the player options. Once the conversation
graph defined by the nodes is set up, vn.run() will begin execution and it
won’t return until the dialogue is done. Nodes are run in consecutive order
unless vn.jump is used to jump to a label node defined with vn.label. Let us
start by looking at a simple example:

local vn = require "vn" -- Load the library

14https://naev.org/api/modules/vn.html
15https://renpy.org

https://naev.org/api/modules/vn.html
https://renpy.org


4.3. BASICS 43

-- Below would be what you would include when you want the dialogue
vn.clear() -- Clear internal variables
vn.scene() -- Start a new scene
local mychar = vn.newCharacter( _("Alex"), {image="mychar.webp"} )
vn.transition() -- Will fade in the new character
vn.na(_([[You see a character appear in front of you.]]) -- Narrator
mychar(_([[How do you do?]])
vn.menu{ -- Give a list of options the player chooses from

{_("Good."), "good"},
{_("Bad."), "bad"},

}

vn.label("good") -- Triggered when the "good" option is chosen
mychar(_("Great!"))
vn.done() -- Finish

vn.label("bad") -- Triggered on "bad" option
mychar(_("That's not …good"))
vn.run()

Above is a simple example that creates a newscenewith a single character
(mychar), introduces the character with the narrator (vn.na), has the character
talk, and then gives two choices to the player that trigger different messages.
By default the vn.transition()will do a fading transition, but you can change
the parameters to do different ones. The narrator API is always available
with vn.na, and once you create a character with vn.newCharacter, you can
simple call the variable to have the character talk. The character images are
looking for in the gfx/vn/characters/ directory, and in this case it would try
to use the file gfx/vn/characters/mychar.webp.

Player choices are controlled with vn.menu which receives a table where
each entry consists of another table with the first entry being the string to
display (e.g., _("Good.")), and the second entry being either a function to run,
or a string representing a label to jump to (e.g., "good"). In the case of passing
strings, vn.jump is used to jump to the label, so that in the example above
the first option jumps to vn.label("good"), while the second one jumps to
vn.label("bad"). By using vn.jump, vn.label, and vn.menu it is possible to
create complex interactions and loops.

It is recommended to look at existing missions for examples of what can
be done with the vn framework.

vntk Wrapper

The full vn framework can be a bit verbose when only displaying small mes-
sages or giving small options. For this purpose, the vntk module16 can

16https://naev.org/api/modules/vntk.html

https://naev.org/api/modules/vntk.html


44 CHAPTER 4. MISSIONS AND EVENTS

simplify the usage, as it is a wrapper around the vn framework. Like the vn
framework, you have to import the library with require, and all the functions
are blocking, that is, the Lua code execution will not continue until the dia-
logues have closed. Let us look at some simple examples of vntk.msg and
vntk.yesno below:

local vntk = require "vntk"

-- …
vntk.msg( _("Caption"), _("Some message to show to the player.") )

-- …
if vntk.yesno( _("Cheese?"), _("Do you like cheese?") ) then

-- player likes cheese
else

-- player does not
end

The code is very simple and requires the library. Then it will display a
message, and afterwards, it will display another with a Yes and No prompt. If
the player chooses yes, the first part of the code will be executed, and if they
choose no, the second part is executed.

Arbitrary Code Execution

It is also possible to create nodes in the dialogue that execute arbitrary Lua
code, and can be used to do things such as pay the player money or modify
mission variables. Note that you can not write Lua code directly, or it will be
executed when the vn is being set up. To have the code run when triggered
by the vn framework, you must use vn.func and pass a function to it. A very
simple example would be

-- ...
vn.label("pay_player")
vn.na(_("You got some credits!"))
vn.func( function ()

player.pay( 50e3 )
end )
-- ...

It is also to execute conditional jumps in the function code with vn.jump.
This would allow to condition the dialogue on things like the player’s free
space or amount of credits as shown below:

-- ...
vn.func( function ()

if player.pilot():cargoFree() < 10 then
vn.jump("no_space")



4.4. ADVANCED USAGE 45

else
vn.jump("has_space")

end
end )

vn.label("no_space")
-- ...

vn.label("has_space")
-- ...

In the code above, a different dialogue will be run depending on whether
the player has less than 10 free cargo space or more than that.

As you can guess, vn.func is really powerful and opens up all sorts of
behaviour. You can also set local or global variables with it, which is very
useful to detect if a player has accepted or not a mission.

4.4 Advanced Usage

TODO

4.4.1 Handling Aborting Missions

When missions are aborted, the abort function is run if it exists. Although
this function can’t stop the mission from aborting, it can be used to clean up
the mission stuff, or even start events such as a penalty for quitting halfway
through the mission. A representative example is below:

local vntk = require "vntk"

...

function abort ()
vntk.msg(_("Mission Failure!"),_([[You have failed the mission, try

again next time!]]))
end

Not that it is not necessary to run misn.finish() nor any other clean up
functions; this is all done for you by the engine.

4.4.2 Dynamic Factions

TODO



46 CHAPTER 4. MISSIONS AND EVENTS

4.4.3 Minigames

TODO

4.4.4 Cutscenes

Cutscenes are a powerful of conveying events that the player may or may not
interactwith. In order to activate cinematicmode, youmust use player.cinematics
function. However, the player will still be controllable and escorts will be doing
their thing. If you want to make the player and escorts stop and be invulner-
able, you can use the cinema library. In particular, the cinema.on function
enables cinema mode and cinema.off disables it.

You can also control where the camera is with camera.set(). By default,
it will try to center the camera on the player, but if you pass a position or pilot
as a parameter, it will move to the position or follow the pilot, respectively.

The cornerstone of cutscenes is to use hooks to make things happen and
show that to the player. In this case, one of the most useful hooks is the
hook.timer timer hook. Let us put it all together to do a short example.

local cinema = require "cinema" -- load the cinema library
...
local someguy -- assume some pilot is stored here

-- function that starts the cutscene
function cutscene00 ()

cinema.on()
camera.set( someguy ) -- make the camera go to someguy
hook.timer( 5, "cutscene01" ) -- advance to next step in 5 seconds

end
function cutscene01 ()

someguy:broadcast(_("I like cheese!"),true) -- broadcast so the
player can always see it

hook.timer( 6, "cutscene02" ) -- give 6 seconds for the player to see
end
function cutscene02 ()

cinema.off()
camera.set()

end

Breaking down the example above, the cutscene itself is made of 3 func-
tions. The first cutscene00 initializes the cinematicmode and sets the camera
to someguy. Afterwards, cutscene01makes someguy same some text and
shows it to the player. Finally, in cutscene02, the cinematic mode is finished
and the camera is returned to the player.

While that is the basics, there is no limit to what can be done. It is possible
to use shaders to create more visual effects, or the luaspfx library. Further-



4.4. ADVANCED USAGE 47

more, pilots can be controlled and made to do all sorts of actions. There is
no limit to what is possible!

4.4.5 Unidiff

TODO

4.4.6 Equipping with equipopt

TODO

4.4.7 Event-Mission Communication

In general, events and missions are to be seen as self-contained isolated
entities, that is, they do not affect each other outside of mission variables.
However, it is possible to exploit the hook module API to overcome this
limitation with hook.custom and naev.trigger:

• hook.custom: allows to define an arbitrary hook on an arbitrary string.
The function takes two parameters: the first is the string to hook (should
not collide with standard names), and the second is the function to run
when the hook is triggered.

• naev.trigger: also takes two parameters and allows to trigger the
hooks set by hook.custom. In particular, the first parameter is the same
as the first parameter string passed to hook.custom, and the second
optional parameter is data to pass to the custom hooks.

For example, you can define a mission to listen to a hook as below:
function create ()

-- ...

hook.custom( "my_custom_hook_type", "dohook" )
end

function dohook( param )
print( param )

end

In this case, "my_custom_hook_type" is the name we are using for the
hook. It is chosen to not conflict with any of the existing names. When the
hook triggers, it runs the function dohook which just prints the parameter.
Now, we can trigger this hook from anywhere simply by using the following
code:

naev.trigger( "my_custom_hook_type", some_parameter )



48 CHAPTER 4. MISSIONS AND EVENTS

The hook will not be triggered immediately, but the second the current
running code is done to ensure that no Lua code is run in parallel. In general,
the mission variables should be more than good enough for event-mission
communication, however, in the few cases communication needs to be more
tightly coupled, custom hooks are a perfect solution.

4.4.8 LuaTK API

TODO

4.4.9 Love2D API

LÖVE is an awesome framework you can use to make 2D
games in Lua. It’s free, open-source, and works on Windows, Mac
OS X, Linux, Android and iOS.

Naev implements a subset of the LÖVE17 API (also known as Love2D),
allowing it to execute many Love2D games out of the box. Furthermore, it
is possible to use the Naev API from inside the Love2D to have the games
interact with the Naev engine. In particular, the VN (Sec. 4.3.10), minigames
(Sec. 4.4.3), and LuaTK (Sec. 4.4.8) are implemented using the Love2D API.
Many of the core game functionality, such as the boarding or communication
menus make use of this API also, albeit indirectly.

The Love2D API works with a custom dialogue window that has to be
started up. There are twoways to do this: create a Love2D game directory and
run them, or set up the necessary functions and create the Love2D instance.
Both are very similar.

The easiest way is to create a directory with a main.lua file that will be
run like a normal Love2D game. At the current time the Naev Love2D API
does not support zip files. An optional conf.lua file can control settings of
the game. Afterwards you can start the game with:

local love = require "love"
love.exec( "path/to/directory" )

If the directory is a correct Love2D game, it will create a window instead of
Naev and be run in that. You can use love.graphics.setBackgroundColor(
0, 0, 0, 0 ) tomake the background transparent, and the following conf.lua
function will make the virtual Love2D window use the entire screen, allowing
you to draw normally on the screen.

17https://love2d.org/

https://love2d.org/


4.5. TIPS AND TRICKS 49

function love.conf(t)
t.window.fullscreen = true

end

The more advanced way to set up Love2D is to directly populate the love
namespace with the necessary functions, such as love.load, love.conf.
love.draw, etc. Afterwards you can use love.run() to start the Love2D
game and create the virtual window. This way is much more compact and
does not require creating a separate directory structure with a main.lua.

Please note that while most of the core Love2D 11.4 API is implemented,
more niche API and things that depend on external libraries like love.physics,
lua-enet, or luasocket are not implemented. If you wish to have missing
API added, it is possible to open an issue for the missing API or create a pull
request. Also note that there are

Differences with Love2D API

Some of the known differences with the Love2D API are as follows:
• You can call images or canvases to render them with object:draw( ...
) instead of only love.graphics.draw( obj, ... ).

• Fonts default to Naev fonts.
• You can use Naev colour strings such as "#b" in love.graphics.print
and love.graphics.printf.

• audio.newSource defaults to second paramater "static" unless spec-
ified (older Love2D versions defaulted to "stream", and it must be set
explicity in newer versions).

• love.graphics.setBackgroundColor uses alpha colour to set the al-
pha of the window, with 0 making the Love2D window not drawn.

4.5 Tips and Tricks

This section contains some tricks and tips for better understanding how to
do specific things in missions and events.

4.5.1 Optimizing Loading

It is important to understand how missions and events are loaded. The
headers are parsed at the beginning of the game and stored in memory.
Whenever a trigger (entering a system, landing on a spob, etc.) happens, the
game runs through all the missions and events to check to see if they should
be started. The execution is done in the following way:



50 CHAPTER 4. MISSIONS AND EVENTS

1. Header statements are checked (e.g., unique missions that are already
done are discarded)

2. Lua conditional code is compiled and run
3. Lua code is compiled and run
4. create function is run
In general, since many events and missions can be checked at every

frame, it is important to try to cull them as soon as possible. When you can,
use location or faction filters to avoid having missions and events appear in
triggers you don’t wish them to. In the case that is not possible, try to use
the Lua conditional code contained in the <cond> node in the header. You
can either write simple conditional statements such as player.credits()
> 50e3, where return gets automatically prepended, or you can write more
complex code where you have to manually call return and return a boolean
value. Do note, however, that it is not possible to reuse variables or code
in the <cond> node in the rest of the program. If you have to do expensive
computations and wish to use the variables later on, it is best to put the
conditional code in the create function and abort the mission or event with
misn.finish(false) or evt.finish(false), respectively.

Furthermore, when a mission or event passes the header and conditional
Lua statements, the entire code gets compiled and run. This implies that all
global variables are computed. If you load many graphics, shaders, or sound
files as global values, this can cause a slowdown whenever the mission is
started. An early issue with the visual novel framework was that all cargo
missions were loading the visual novel framework that were loading lots of
sounds and shaders. Since this was repeated for every mission in themission
computer, it created noticeable slowdowns. This was solved by relying on
lazy loading and caching, and not just blindly loading graphics and audio files
into global variables on library load.

4.5.2 Global Cache

In some cases that you want to load large amount of data once and reuse
it throughout different instances of events or missions, it is possible to use
the global cache with naev.cache(). This function returns a table that is
accessible by all the Lua code. However, this cache is cleared every time the
game starts. You can not rely on elements in this cache to be persistent. It is
common to wrap around the cache with the following code:

local function get_calculation ()
local nc = naev.cache()
if nc.my_calculation then

return nc.my_calculation
end



4.5. TIPS AND TRICKS 51

nc.my_calculation = do_expensive_calculation ()
return nc.my_calculation

end

The above code tries to access data in the cache. However, if it does not
exist (by default all fields in Lua are nil), it will do the expensive calculation
and store it in the cache. Thus, the first call of get_calculation()will be slow,
however, all subsequent callswill be very fast as no do_expensive_calculation()
gets called.

4.5.3 Finding Natural Pilots

In some cases, you want a mission or event to do things with naturally spawn-
ing pilots, and not spawn new ones. Naturally spawned pilots have the
naturalflag set in theirmemory. You can access thiswith p:memory().natural
and use this to limit boarding hooks and the likes to only naturally spawned
pilots. An example would be:

function create ()
-- ...
hook.board( "my_board" )

end

function my_board( pilot_boarded )
if not pilot_boarded:memory().natural then

return
end
-- Do something with natural pilots here

end

In the above example, we can use a board hook to control when the player
boards a ship, and only handle the case that naturally spawning pilots are
boarded.

4.5.4 Making Aggressive Enemies

TODO Explain how to nudge the enemies without relying on pilot:control().

4.5.5 Working with Player Fleets

TODO Explain how to detect and/or limit player fleets.



52 CHAPTER 4. MISSIONS AND EVENTS

4.6 Full Example

Below is a full example of a mission.

--[[
<?xml version='1.0' encoding='utf8'?>
<mission name="Mission Template (mission name goes here)">
<unique />
<priority>4</priority>
<chance>5</chance>
<location>Bar</location>
</mission>
--]]
--[[

Mission Template (mission name goes here)

This is a Naev mission template.
In this document aims to provide a structure on which to build many
Naev missions and teach how to make basic missions in Naev.
For more information on Naev, please visit: http://naev.org/
Naev missions are written in the Lua programming language:

http://www.lua.org/
There is documentation on Naev's Lua API at: http://api.naev.org/
You can study the source code of missions in

[path_to_Naev_folder]/dat/missions/

When creating a mission with this template, please erase the
explanatory

comments (such as this one) along the way, but retain the the MISSION
and

DESCRIPTION fields below, adapted to your mission.

MISSION: <NAME GOES HERE>
DESCRIPTION: <DESCRIPTION GOES HERE>

--]]

-- require statements go here. Most missions should include
-- "format", which provides the useful `number()` and
-- `credits()` functions. We use these functions to format numbers
-- as text properly in Naev. dat/scripts/common/neutral.lua provides
-- the addMiscLog function, which is typically used for non-factional
-- unique missions.
local fmt = require "format"
local neu = require "common.neutral"
local vntk = require "vntk"

--[[
Multi-paragraph dialog strings *can* go here, each with an identifiable



4.6. FULL EXAMPLE 53

name. You can see here that we wrap strings that are displayed to the
player with `_()`. This is a call to gettext, which enables
localization. The _() call should be used directly on the string, as
shown here, instead of on a variable, so that the script which figures
out what all the translatable text is can find it.

When writing dialog, write it like a book (in the present-tense), with
paragraphs and quotations and all that good stuff. Leave the first
paragraph unindented, and indent every subsequent paragraph by four (4)
spaces. Use quotation marks as would be standard in a book. However, do
*not* quote the player speaking; instead, paraphrase what the player
generally says, as shown below.

In most cases, you should use double-brackets for your multi-paragraph
dialog strings, as shown below.

One thing to keep in mind: the player can be any gender, so keep all
references to the player gender-neutral. If you need to use a
third-person pronoun for the player, singular "they" is the best choice.

You may notice curly-bracketed {words} sprinkled throughout the text.
These

are portions that will be filled in later by the mission via the
`fmt.f()` function.
--]]

-- Set some mission parameters.
-- For credit values in the thousands or millions, we use scientific

notation (less error-prone than counting zeros).
-- There are two ways to set values usable from outside the create()

function:
-- - Define them at file scope in a statement like "local credits =

250e3" (good for constants)
-- - Define them as fields of a special "mem" table: "mem.credits =

250e3" (will persist across games in the player's save file)
local misplanet, missys = spob.getS("Ulios")
local credits = 250e3

-- Here we use the `fmt.credits()` function to convert our credits
-- from a number to a string. This function both applies gettext
-- correctly for variable amounts (by using the ngettext function),
-- and formats the number in a way that is appropriate for Naev (by
-- using the numstring function). You should always use this when
-- displaying a number of credits.
local reward_text = fmt.credits( credits )

--[[
First you need to *create* the mission. This is *obligatory*.

You have to set the NPC and the description. These will show up at the



54 CHAPTER 4. MISSIONS AND EVENTS

bar with the character that gives the mission and the character's
description.
--]]
function create ()

-- Naev will keep the contents of "mem" across games if the player
saves and quits.

-- Track mission state there. Warning: pilot variables cannot be saved.
mem.talked = false

-- If we needed to claim a system, we would do that here with
-- something like the following commented out statement. However,
-- this mission won't be doing anything fancy with the system, so we
-- won't make a system claim for it.
-- Only one mission or event can claim a system at a time. Using claims
-- helps avoid mission and event collisions. Use claims for all systems
-- you intend to significantly mess with the behaviour of.
--if not misn.claim(missys) then misn.finish(false) end

-- Give the name of the NPC and the portrait used. You can see all
-- available portraits in dat/gfx/portraits.
misn.setNPC( _("A well-dressed man"),

"neutral/unique/youngbusinessman.webp", _("This guy is wearing a
nice suit.") )

end

--[[
This is an *obligatory* part which is run when the player approaches the
character.

Run misn.accept() here to internally "accept" the mission. This is
required; if you don't call misn.accept(), the mission is scrapped.
This is also where mission details are set.
--]]
function accept ()

-- Use different text if we've already talked to him before than if
-- this is our first time.
local text
if mem.talked then

-- We use `fmt.f()` here to fill in the destination and
-- reward text. (You may also see Lua's standard library used for

similar purposes:
-- `s1:format(arg1, ...)` or equivalently string.format(s1, arg1,

...)`.)
-- You can tell `fmt.f()` to put a planet/system/commodity object

into the text, and
-- (via the `tostring` built-in) know to write its name in the

player's native language.
text = fmt.f(_([["Ah, it's you again! Have you changed your mind?

Like I said, I just need transport to {pnt} in the {sys}



4.6. FULL EXAMPLE 55

system, and I'll pay you {reward} when we get there. How's that
sound?"]]), {pnt=misplanet, sys=missys, reward=reward_text})

else
text = fmt.f(_([[As you approach the guy, he looks up in curiosity.

You sit down and ask him how his day is. "Why, fine," he
answers. "How are you?" You answer that you are fine as well
and compliment him on his suit, which seems to make his eyes
light up. "Why, thanks! It's my favourite suit! I had it custom
tailored, you know.

"Actually, that reminds me! There was a special suit on {pnt} in the
{sys} system, the last one I need to complete my collection, but
I don't have a ship. You do have a ship, don't you? So I'll tell
you what, give me a ride and I'll pay you {reward} for it! What
do you say?"]]),
{pnt=misplanet, sys=missys, reward=reward_text})

mem.talked = true
end

-- This will create the typical "Yes/No" dialogue. It returns true if
-- yes was selected.
-- For more full-fledged visual novel API please see the vn module. The
-- vntk module wraps around that and provides a more simple and easy

to use
-- interface, although it is much more limited.
if vntk.yesno( _("My Suit Collection"), text ) then

-- Followup text.
vntk.msg( _("My Suit Collection"), _([["Fantastic! I knew you would

do it! Like I said, I'll pay you as soon as we get there. No
rush! Just bring me there when you're ready.]]) )

-- Accept the mission
misn.accept()

-- Mission details:
-- You should always set mission details right after accepting the
-- mission.
misn.setTitle( _("Suits Me Fine") )
misn.setReward( reward_text )
misn.setDesc( fmt.f(_("A well-dressed man wants you to take him to

{pnt} in the {sys} system so he get some sort of special
suit."), {pnt=misplanet, sys=missys}) )

-- Markers indicate a target planet (or system) on the map, it may
not be

-- needed depending on the type of mission you're writing.
misn.markerAdd( misplanet, "low" )

-- The OSD shows your objectives.
local osd_desc = {}



56 CHAPTER 4. MISSIONS AND EVENTS

osd_desc[1] = fmt.f(_("Fly to {pnt} in the {sys} system"),
{pnt=misplanet, sys=missys} )

misn.osdCreate( _("Suits Me Fine"), osd_desc )

-- This is where we would define any other variables we need, but
-- we won't need any for this example.

-- Hooks go here. We use hooks to cause something to happen in
-- response to an event. In this case, we use a hook for when the
-- player lands on a planet.
hook.land( "land" )

end
-- If misn.accept() isn't run, the mission doesn't change and the

player can
-- interact with the NPC and try to start it again.

end

-- luacheck: globals land (Hook functions passed by name)
-- ^^ That is a directive to Luacheck, telling it we're about to use a

global variable for a legitimate reason.
-- (More info here: https://github.com/naev/naev/issues/1566) Typically

we put these at the top of the file.

-- This is our land hook function. Once `hook.land( "land" )` is called,
-- this function will be called any time the player lands.
function land ()

-- First check to see if we're on our target planet.
if spob.cur() == misplanet then

-- Mission accomplished! Now we do an outro dialog and reward the
-- player. Rewards are usually credits, as shown here, but
-- other rewards can also be given depending on the circumstances.
vntk.msg( fmt.f(_([[As you arrive on {pnt}, your passenger reacts

with glee. "I must sincerely thank you, kind stranger! Now I
can finally complete my suit collection, and it's all thanks to
you. Here is {reward}, as we agreed. I hope you have safe
travels!"]]), {pnt=misplanet, reward=reward_text}) )

-- Reward the player. Rewards are usually credits, as shown here,
-- but other rewards can also be given depending on the
-- circumstances.
player.pay( credits )

-- Add a log entry. This should only be done for unique missions.
neu.addMiscLog( fmt.f(_([[You helped transport a well-dressed man

to {pnt} so that he could buy some kind of special suit to
complete his collection.]]), {pnt=misplanet} ) )

-- Finish the mission. Passing the `true` argument marks the
-- mission as complete.
misn.finish( true )



4.6. FULL EXAMPLE 57

end
end



58 CHAPTER 4. MISSIONS AND EVENTS



Chapter 5

Systems and System Objects

An important aspect of Naev is the universe. The universe is formet by
isolated systems, of which only one is simulated at any given time. The
systems are connected to each other forming a large graph. Each system
can contain an arbitrary number of objects known as System Objects (Spobs),
which the player can, for example land on or perform other actions.

Most System and Spob editting can be done using the in-game editor.
This is disabled by default, but by either starting the game with --devmode or
enabling devmode = true in the configuration file will enable this functionality.
Afterwards, an Editor button should appear in the main menu that should
open the universe editor.

5.1 Systems

In the context of Naev, ”systems” refer to star systems, the instanced loca-
tions where starship flight and combat take place. The contents of systems
consist mainly of three object types: spobs (space objects) which represent
planets, space stations or other bodies of interest; asteroid fields which act
as commodity sources and obstacles to weapons fire; and jump points to
facilitate travel to other systems. Many systems may also have persistent
effects related to nebulae including visuals, sensor interference and even
constant damage over time. A ”total conversion” plugin must contain at least
one system to have minimum viable content.

5.1.1 Universe Editor

Naev includes an in game editor to generate and modify both systems and
their contents. The editor is accessible from the game’s main menu when

59



60 CHAPTER 5. SYSTEMS AND SYSTEM OBJECTS

Dev Mode is enabled by either of two methods: 1) Use the --devmode launch
option. 2) In your conf.lua, find and set devmode = true.

The universe editor is far easier to use than direct editing of .XML files. You
can quickly place new systems and drag them around the map, link systems
by generating jump lanes and automatically generating entry and exit points,
and create spobs, virtual spobs and asteroid fields within systems.

5.1.2 System XML

Each system is represented by a standalone .XML file within the /ssys/
directory of your main or plugin data directory.

• <ssys>: Category which encapsulates the system’s data file.
• <name>: Name of the system. Use this string when referencing this
system in other .XML files. This name will also be displayed within the
game itself.

• <general>: Includes data defining the size and traits of the system.
– <radius>: Defines the physical dimensions of the system. This

value is visualized in game by the scaling of the system travel map,
and in the universe editor by a circle seen when editing systems.
Jump points with the <autopos/> tag will be placed on this circle.
System content such as spobs can be placed outside this radius
but may be difficult for players to locate or access.

– <spacedust>: Defines the density of space dust displayed in the
system.

– <interference>: Influences the sensors of ships in the system. A
value greater than 0 will reduce the ranges at which you can detect,
identify or destealth other ships. Reduction of detection, evasion,
and stealth ranges is computed by the formula 1

1+ interference
100

.
– <nebula>: Reduces visibility when within the system. A value

greater than 0 will cause ships, spobs and asteroids to not appear
until the player gets close. The rough visibility range is computed
from the formula (1200−nebula) ·ewdetect+nebuvisibility, where
ewdetect and nebuvisibility are each ships detection and nebula
visibility statistics.

– <volatility>: Damage over time inflicted upon ships travelling
in this system. Value is expressed in MJ per second, applied to
shields first and armor after.

– <features>: A string value defining unique characteristics of the
system, such as whether it has a factional homeworld or some
other anomality. This is shown in the in-game map.

– <pos>: Position of the system on the universe map, expressed as



5.1. SYSTEMS 61

x and y coordinates relative to the universe map’s origin point.
• <spobs>: Category which includes all spobs, including virtual spobs,
which are present in this system.

– <spob>: Adds the spob of that name to the system. The coordinate
position of the spob is defined within that spob’s .XML file.

– <spob_virtual>: Adds the virtual spob of that name to the system.
Virtual spobs are used primarily for faction presences within the
system.

• <jumps>: Category which includes coordinates and tags for jump points
which allow players to travel to other systems.

– <jump>: Defines a jump point.
– <target>: Name of the jump point’s destination system. The

direction of travel when entering this jump point corresponds to
that of the jump line shown on the universe map.

– <pos>: Position of the jump point within the system, expressed
as x and y coordinates relative to the system’s x="0" y="0" origin
point.

– <autopos/>: Alternative to <pos> which prompts the game to gen-
erate a position for the jump point. The point will always be placed
at the system boundary (the circle defined by <radius>) on a line
between the current system center and the destination system.

* ‘<exitonly/>: Prevents the player fromdetecting this jump point
or entering it from the current system. These points are used
exclusively as the destinations to jumps coming in from other
systems.

– <hide>: Modifies the range at which your sensors can discover
previously unknown jump points. A value of 1 is the default and
indicates no change. Values greater than 1 increase the jump
point’s detection distance. Values less than 1 but greater than
0 reduce the jump point’s detection distance. A value of 0 is a
specific exception which labels the jump as part of a Trade Route -
the jump point will automatically be discovered when the player
enters the system, regardless of distance, and also have some
small beacons next to it.

– <hidden/>: Designates the jump as a hidden point which cannot
be discovered with standard sensors. In the base Naev scenario,
hidden jump points are revealed to the player mainly via mission
rewards, by completing certain missions or by equipping and acti-
vating a Hidden Jump Scanner outfit.

• <asteroids>: Category which includes coordinates and contents of
asteroid fields.



62 CHAPTER 5. SYSTEMS AND SYSTEM OBJECTS

– <asteroid>: Defines an asteroid field.
– <group>: Names an .XML list from /asteroids/groups that de-

fines what asteroids spawn in this field.
– <pos>: Center position of the asteroid field within the system,

expressed as x and y coordinates relative to the system’s center
point.

– <radius>: Size of the circular asteroid field, expressed in distance
units from the field’s center point as defined in the <pos> field.

– <density>: Affects how many asteroids are present within the
asteroid field’s area.

– <exclusion>: Defines an asteroid exclusion zone, creating a ”neg-
ative” asteroid field. This can be used to create asteroid fields of
unique shapes such as rings or crescents.

– <radius> and <pos> fields function identically to those under <as-
teroid>.

5.1.3 System Tags

TODO

5.1.4 Defining Jumps

Within Naev, jump points are used to travel between systems. Each jump
point has a position within the system, defined either manually using the
<pos> tag and x and y values or by using the <autopos/> tag to automatically
place the point at a distance defined by the system’s <radius>. Jump points
also have an entry vector, or direction which ships must be facing to begin a
jump. This entry vector is dictated by the position of the destination system
on the universe map relative to the current system - that is, a jump point will
always point towards its destination system.

To create a standard two-way jump lane between two systems: 1) Within
current system a, create a <jump>. Use the <target> tag to name destination
system b. Use the <autopos/> tag to automatically place the jump point, or
the <pos> tag to manually define its position with X and Y values. 2) Repeat
the above in system b to create a jump point, using the <target> tag to name
destination system a.

5.1.5 Asteroid Fields

Asteroid fields are zones of floating objects within systems. They differ from
spobs in that they are defined as circular areas rather than single points with



5.2. SYSTEM OBJECTS (SPOBS) 63

graphics. Asteroids also interact with ship weapons fire and often generate
commodity pickups when destroyed.

Asteroid data files are found in /asteroids/types/. These files are in
.XML format and contain the following fields: * <scanned>: Text string shown
to the player upon entering range of their asteroid scanner outfit. * <gfx>: Pos-
sible graphics for this asteroid. Multiple graphics can be referenced, one per
<gfx> tag, to increase the variety of visuals. * <armor_min> and <armor_max>:
Defines a range of armor values for asteroids to spawn with. Higher values
meanmore damagemust be dealt to destroy an asteroid. * <absorb>: Defines
the asteroid’s damage reduction before applying weapons’ armor penetration
stats. * <commodity>: Lists which commodity pickups and quantities thereof
can spawn upon destruction of the asteroid. * <name>: Name of commodity.
* <quantity>: Maximum quantity of commodity pickups

This processwill let you create an asteroid field in your <ssys> .XML file: 1)
Place graphics for your asteroids, in .WEBP format, to /gfx/spob/space/asteroid/;
2) Write asteroid data files, in .XML format, to /asteroids/types/; 3) Write an
asteroid group list, in .XML format, to /asteroids/groups/. 4) In your <ssys>
.XML file, use the <asteroid> field and subfields above to tell the game what
asteroids the field will be made of. <pos> and <radius> define the position
and size of your field. <group> and <density> define which asteroid group
and how many asteroids appear in your field.

5.2 System Objects (Spobs)

You can either create spobs manually by copying and pasting existing spobs
and editing them (make sure to add them to a system!), or create and ma-
nipulate them with the in-game editor (requires devmode = true in the config
file or running naev with --devmode). Note that the in-game editor doesn’t
support all the complex functionality, but does a large part of the job such as
choosing graphics and positioning the spobs.

5.2.1 System Editor

TODO

5.2.2 Spob Classes

Naev planetary classes are based on Star Trek planetary classes1.

1https://stexpanded.fandom.com/wiki/Planet_classifications

https://stexpanded.fandom.com/wiki/Planet_classifications


64 CHAPTER 5. SYSTEMS AND SYSTEM OBJECTS

Station classes:

• Class 0: Civilian stations and small outposts
• Class 1: Major military stations and outposts
• Class 2: Pirate strongholds
• Class 3: Robotic stations
• Class 4: Artificial ecosystems such as ringworlds or discworlds

Planet classes:

• Class A: Geothermal (partially molten)
• Class B: Geomorteus (partially molten, high temperature; Mercury-like)
• Class C: Geoinactive (low temperature)
• Class D: Asteroid/Moon-like (barren with no or little atmosphere)
• Class E: Geoplastic (molten, high temperature)
• Class F: Geometallic (volcanic)
• Class G: Geocrystaline (crystalizing)
• Class H: Desert (hot and arid, little or no water)
• Class I: Gas Giant (comprised of gaseous compounds, Saturn-like)
• Class J: Gas Giant (comprised of gaseous compounds, Jupiter-like)
• Class K: Adaptable (barren, little or no water, Mars-like)
• Class L: Marginal (rocky and barren, little water)
• Class M: Terrestrial (Earth-like)
• Class N: Reducing (high temperature, Venus-like)
• Class O: Pelagic (very water-abundant)
• Class P: Glaciated (very water-abundant with ice)
• Class Q: Variable
• Class R: Rogue (temperate due to geothermal venting)
• Class S: Ultragiant (comprised of gaseous compounds)
• Class X: Demon (very hot and/or toxic, inhospitable)
• Class Y: Toxic (very hot and/or toxic, inhospitable, containing valuable
minerals)

• Class Z: Shattered (formerly hospitable planet which has become hot
and/or toxic and inhospitable)

5.2.3 Spob XML

• <spob>: Category which encapsulates all tag data relating to the spob.
• <lua>: Runs a Lua script in relation to this spob.
• <pos>: Position of the spob within its parent system, defined by x and y
coordinates relative to the system center.

• <GFX>: Category relating to graphics.



5.2. SYSTEM OBJECTS (SPOBS) 65

• <space>: Defines the image, in .WEBP format, which represents the
spob when travelling through the parent system. The dimensions of
the graphic can also influence the area at which a ship can begin its
landing sequence.

• <exterior>: Defines the image, in .WEBP format, displayed on the
spob’s ”Landing Main” tab.

• <presence>: Category relating to faction presence, used to generate
patrol lanes within the parent system.

• <faction>: Defines the spob’s owning or dominant faction.
• <base>: Defines the base presence of the spob. The maximum base
presence of all spobs of the same faction is used as the base presence
of the faction in the system. For example, if there are two spobs with
base 50 and 100 for a faction in a system, the system’s base presence
for the faction is 100 and the 50 value is ignored.

• <bonus>: Defines the bonus presence of the spob. The bonus presence
of all the spobs of the same faction in a system are added together and
added to the presence of the system. For example, for a system with a
base presence of 100, if there are two spobs with a bonus of 50 each,
the total presence becomes 100 + 50 + 50 = 200.

• <range>: The range at which the presence of the spob extends. A
value of 0 indicates that the presence range only extends to the current
system, while a presence of 2 would indicate that it extends to up to
2 systems away. The presence falloff is defined as 1− dist

range+1
, and is

multiplied to both base presence and bonus presence. For example, a
spob with 100 presence and a range of 3 would give 75 presesnce to
1 system away, 50 presence to 2 systems away, and 25 presence to 3
systems away.

• <general>: Category relating to many functions of the spob including
world statistics, available services, etc.

• <class>: Defines the spob’s planetary or station class as listed above
in the Station Classes and Planetary Classes categories above. This
may be referenced by missions or scripts.

• <population>: Defines the spob’s habitating population.
• <hide>: Modifies the range at which your ship’s sensors can first dis-
cover the spob. A value of 1 is default range; values greater than 1make
it easier while values between 1 and 0 make it more difficult. A spob
with a hide value of 0 will automatically reveal themselves to the player
upon entering the system.

• <services>: Defines which services are available to the player while
landed at the spob.

• <land>: Includes the Landing Main tab and allows the player to land on



66 CHAPTER 5. SYSTEMS AND SYSTEM OBJECTS

the spob. A spob without the land tag cannot be landed on.
• <refuel>: Refuels the player’s ship on landing. A landable spob without
this tag will not generate an Autosave (andwill warn the player of this) to
mitigate the chances of a ”soft lock” where the player becomes trapped
in a region of systems with no fuel sources and no autosaves prior to
entering said region.

• <bar>: Includes the Bar tab, allowing the player to converse with generic
or mission-relevant NPCs and view a news feed. Certain spob tags may
alter the availability of NPCs and the news.

• <missions>: Includes the Mission Computer tab, where the player can
accept generic missions.

• <commodity>: Includes theCommodities Exchange tab, where the player
can buy and sell trade goods.

• <outfits>: Includes the Outfitter tab, allowing the player to buy and
sell ship outfits. Also grants access to the Equipment tab where the
player can swap outfits to and from their active ship.

• <shipyard>: Includes the Shipyard tab, allowing the player to purchase
new ships. Grants access to the Equipment tab as above; also allows
the player to swap their active and fleet ships and change the oufits on
all player-owned ships.

• <commodities>: Declares the spob as having ready access to commodi-
ties, independent of the Commodities Exchange service.

• <description>: Text string presented to the player on the LandingMain
tab. This text body is perhaps the primary method of presenting the
spob’s lore to the player.

• <bar>: Text string presented to the player on the Bar tab. Compared
to the description tag’s lore regarding the spob as a whole, this text
describes only the Spaceport Bar and its surroundings.

• <tech>: Category which includes Tech Lists, used to define the items
in stock at the Outfitter and Shipyard.

• <item>: Includes one Tech List.
• <tags>: Category which includes tags that describe the spob. These
tags can be referenced in missions and scripts; see the Spob Tags
section below for more information.

5.2.4 Spob Tags

Tags are a versatile way to define the main facets of interest about a spob
with respect to its faction, i.e. what differentiates it from the other spobs the
player will (try and) visit.

Tags consist of binary labelswhich are accessible through the LuaAPIwith



5.2. SYSTEM OBJECTS (SPOBS) 67

spob.tags(). They are meant to give indication of the type of spob, and are
meant to be used by missions and scripts to, for example, get specific spobs
such as Dvaered mining worlds to send the player to get mining equipment
or the likes.

Tags can be defined by the following part of XML code:
<tags>
<tag>research</tag>
</tags>

where the above example would signify the spob is focused on research.

Special Tags

These tags significantly change the functionality of the spob:
• restricted: player should not normally have access here, and normal
missions shouldn’t spawn or try to come to the spob

• nonpc: there should be no normal generic NPCs spawning at the space-
port bar

• nonews: there is no news at the spaceport bar

Descriptive Tags

Below is the complete list of dominantly used descriptive tags. It should be
noted that tagging is incomplete at present and it is possible that none of
these tags will apply to many spobs (e.g. uninhabited, average, uninteresting
or deserted spobs). Most others will only have one or two tags - they are
supposed to represent important facets of the spob in its own estimation,
not minor elements e.g. while the (temporary) Imperial Homeworld has many
criminals and military personnel neither tag applies since its defining tags
would be rich, urban and maybe tourism or trade.

• station: the spob is a space station or gas giant spaceport
• wormhole: the spob is a wormhole
• hypergate: the spob is a hypergate
• active: the spob is active (currently only matters for hypergates)
• ruined: the spob is ruined (currently only matters for hypergates)
• new: recently colonised worlds / recently built stations (definitely post-
Incident)

• old: long-time colonised worlds / old stations (definitely pre-Incident)
• rich: the population living on the spob is rich by the standards of the
faction

• poor: the population living on the spob is poor by the standards of the
faction



68 CHAPTER 5. SYSTEMS AND SYSTEM OBJECTS

• urban: the spob consists of mainly heavily developed cities and urban
environments

• rural: the spob consists of mainly undeveloped and virgin lands
• tourism: spob has interests and draws in tourists
• mining: mining is an important part of the spob economy
• agriculture: agriculture is an important part of the spob economy
• industrial: industry is an important part of the spob economy
• medical: medicine is an important part of the spob economy
• trade: trade is an important part of the spob economy
• shipbuilding: shipbuilding is an important part of the spob economy
• research: the spob has a strong focus in research (special research
laboratories, etc…)

• immigration: the spob draws in a large number of immigrants or is
being colonised

• refuel: the spobs reason for existance is as a fueling point
• government: the spob has important government functions or hosts
the central government

• military: the spob has an important factional military presence
• religious: the spob has an important religious significance or presence
• prison: the spob has important prison installations
• criminal: the spob has a large criminal element such as important pirate
or mafia presence

5.2.5 Lua Scripting

TODO

5.2.6 Techs

TODO



Chapter 6

Outfits

TODO

6.1 Slots

TODO

6.2 Ship Stats

TODO

6.3 Outfit Types

TODO

6.3.1 Modification Outfits

TODO

69



70 CHAPTER 6. OUTFITS



Chapter 7

Ships

Ships are tho cornerstone of gameplay in Naev. The player themselves is
represented as a ship and so are all other NPCs found in space.

7.1 Ship Classes

Ships classes have an intrinsic size parameter accessiblewith the ship.size()
Lua API. This is a whole integer number from 1 to 6.

In , small ships (size 1 and 2) use small core slots and are meant to
be fast and small. Medium ships (size 3 and 4) use medium core slots and
are still agile, while being able to pack more of a punch. Large ships (size 5
and 6) are slow hulking giants with heavy slots meant to dominate. There
is always a trade-off between agility and raw power, giving all ships a useful
role in the game.

Ships are also split into two categories: civilian and military. Civilian ships
are meant to focus more on utility and flexibility, while military ships focus
more on combat abilities.

An overview of all the ship classes is shown below:
• Civilian

– Yacht: very small ship often with only few crew members (size 1)
– Courier: small transport ship (size 2)
– Freighter: medium transport ship (size 3)
– Amoured Transport: medium ship with some combat abilities

(size 4)
– Bulk Freighter: large transport ship (size 5)

• Military
– Small

* Scout: small support ship (size 1)

* Interceptor: ultra small attack ship (size 1)

71



72 CHAPTER 7. SHIPS

* Fighter: small attack ship (size 2)

* Bomber: missile-based small attack ship (size 2)
– Medium

* Corvette: agile medium ship (size 3)

* Destroyer: heavy-medium ship (size 4)
– Large

* Cruiser: large ship (size 5)

* Battleship: firepower-based extremely large ship (size 6)

* Carrier: fighter bay-based extremely large ship (size 6)
Note that it is also possible to give custom class names. For example,

you can have a ship be of class Yacht, yet show the class name as Luxury
Yacht in-game.

7.2 Ship XML

Each ship is represented with a stand alone file that has to be located in
ships/ in the data files or plugins. Each ship has to be defined in a separate
file and has to have a single <ship> base node.

• name (attribute): Ship name, displayed in game and referenced by tech
lists.

• points: Fleet point value. In general used by both the fleet spawning
code and by player fleets.

• base_type: Specifies the base version of the ship, useful for factional
or other situational variants. (For example, a Pirate Hyena would have
the ”Hyena” base type.

• GFX: Name of the ship graphic in .webp format. It is looked up at
gfx/ship/DIR/NAME, where DIR is the value of GFX up to the first un-
derscore, and NAME is the value of GFX with a special suffix depending
on the type of image. The base image will use a suffix of .webp (or .png
if the webp is not found), the comm window graphic will use a suffix of
_comm.webp, and the engine glow will use a suffix of _engine.webp. As
an example, for a value of GFX="hyena_pirate, the base graphic will be
searched at gfx/ship/hyena/hyena_pirate.webp

– size (attribute): The ship sprite’s resolution in pixels. For example,
size=60 refers to a 60x60 graphic.

– sx and sy (attributes): The number of columns and rows, respec-
tively, in the sprite sheet.

• GUI: The in-flight GUI used when flying this ship.
• sound: Sound effect used when accelerating during flight.
• class: Defines the ship’s AI when flown by escorts and NPCs.



7.2. SHIP XML 73

– display (attribute): Overrides the displayed ”class” field in the ship
stats screen.

• price: Credits value of the ship in its ”dry” state with no outfits.
• time_mod (optional): Time compression factor during normal flight. A
value of 1means the ship will fly in ”real time”, <1 speeds up the game
and >1 slows down the game.

• trail_generator: Creates a particle trail during flight.
– x, y (attributes): Trail origin coordinates, relative to the ship sprite

in a ”90 degree” heading.
– h (attributes): Trail coordinate y-offset, used to modify the origin

point on a ”perspective” camera.
• fabricator: Flavor text stating the ship’s manufacturer.
• license (optional): License-type outfit which must be owned to pur-
chase the ship.

• cond (optional): Lua conditional expression to evaluate to see if the
player can buy the ship.

• condstr (optional): human-readable interpretation of the Lua condi-
tional expression cond.

• description: Flavor text describing the ship and its capabilities.
• characteristics: Core ship characteristics that are defined as inte-
gers.

– crew: Number of crewmen operating the ship. Used in boarding
actions.

– mass: Tonnage of the ship hull without any cargo or outfits.
– fuel_consumption: How many units of fuel the ship consumes to

make a hyperspace jump.
– cargo: Capacity for tonnes of cargo.

• slots: List of available outfit slots of the ship.
– weapon, utility and structure: Defines whether the outfit slot

fits under the Weapon, Utility or Structure columns.

* x, y, and h (attributes) define the origin coordinates of weapon
graphics such as projectiles, particles and launched fighters.

* size (attribute): Defines the largest size of outfit allowed in
the slot. Valid values are small, medium and large.

* prop (attribute): Defines the slot as accepting a particular type
of outfit defined by an .XML file in the slots/ directory. The
Naev default scenario includes systems, engines, and hull
values for Core Systems, Engines, and Hull outfits which must
be filled (if they exist) for a ship to be spaceworthy.

* exclusive=1 (attribute): Restricts the slot to accepting only
the outfits defined by the prop field.



74 CHAPTER 7. SHIPS

* Inserting an outfit’s name will add it to that outfit slot in the
ship’s ”stock” configuration. This is useful for selling a ship
with prefilled core outfits to ensure its spaceworthiness im-
mediately upon purchase.

• stats (optional): Defines modifiers applied to all characteristics and
outfits on the ship.

– Fields here correspond to those in the characteristics category
and the general and specifics categories on equipped outfits.

• tags (optional): Referenced by scripts. Can be used to effect availability
of missions, NPC behavior and other elements.

– tag: Each tag node represents a binary flag which are accessible
as a table with ship.tags()

• health: Supercategory which defines the ship’s intrinsic durability be-
foremodifiers from stats and equipped outfits. Note that this node and
subnodes are deprecated and will likely be removed in future versions.
Use ship stats instead!

– armour: Armour value.
– armour_regen: Armour regeneration in MW (MJ per second).
– shield: Shield value.
– shield_regen: Shield regeneration in MW (MJ per second).
– energy: Energy capacity.
– energy_regen: Energy regeneration in MW (MJ per second).
– absorb: Reduction to incoming damage.

A full example of the starter ship ”Llama” is shown below.
<?xml version='1.0' encoding='UTF-8'?>
<ship name="Llama">
<points>20</points>
<base_type>Llama</base_type>
<gfx size="47">llama</gfx>
<sound>engine</sound>
<class>Yacht</class>
<price>120000</price>
<time_mod>1</time_mod>
<trail_generator x="-12" y="-16" h="-2">nebula</trail_generator>
<trail_generator x="-12" y="16" h="-2">nebula</trail_generator>
<trail_generator x="-12" y="-6" h="0">fire-thin</trail_generator>
<trail_generator x="-12" y="0" h="0">fire-thin</trail_generator>
<trail_generator x="-12" y="6" h="0">fire-thin</trail_generator>
<fabricator>Melendez Corp.</fabricator>
<description>One of the most widely used ships in the galaxy. Renowned

for its stability and stubbornness. The design hasn't been modified
much since its creation many, many cycles ago. It was one of the
first civilian use spacecrafts, first used by aristocracy and now
used by everyone who cannot afford better.</description>

<characteristics>



7.3. SHIP GRAPHICS 75

<crew>2</crew>
<mass>60</mass>
<fuel_consumption>100</fuel_consumption>
<cargo>15</cargo>

</characteristics>
<health>
<armour>25</armour>
<armour_regen>0</armour_regen>

</health>
<slots>
<weapon size="small" x="7" y="0" h="1" />
<weapon size="small" x="-3" y="0" h="2" />
<utility size="small" prop="systems">Unicorp PT-16 Core

System</utility>
<utility size="small" prop="accessory" />
<utility size="small" />
<utility size="small" />
<utility size="small" />
<structure size="small" prop="engines">Nexus Dart 160

Engine</structure>
<structure size="small" prop="hull">Unicorp D-2 Light

Plating</structure>
<structure size="small" />
<structure size="small" />
<structure size="small" />
<structure size="small" />

</slots>
<stats>
<accel_mod>-10</accel_mod>
<turn_mod>-10</turn_mod>
<cargo_mod>20</cargo_mod>
<armour_mod>10</armour_mod>
<cargo_inertia>-20</cargo_inertia>

</stats>
<tags>
<tag>standard</tag>
<tag>transport</tag>

</tags>
</ship>

7.3 Ship Graphics

Ship graphics are defined in the <GFX> node as a string with additional at-
tributes like number of sprites or size also defined in the XML. Graphics for
each ship are stored in a directory found in gfx/ship/, where the base graph-
ics, engine glow graphics, and comm window graphics are placed separately
with specific file names.



76 CHAPTER 7. SHIPS

In particular, the GFX string name is sensitive to underscores, and the
first component up to the first underscore is used as the directory name. As
an example, with <GFX>llama</GFX>, the graphics would have to be put in
gfx/ship/llama/, while for <GFX>hyena_pirate</GFX>, the directory would
be gfx/ship/hyena. The specific graphics are then searched for inside the
directory with the full GFX string value and a specific prefix. Assuming GFX is
the graphics name and DIR is the directory name (up to first underscore in
GFX), we get:

• gfx/ship/DIR/GFX.webp: ship base graphic file
• gfx/ship/DIR/GFX_engine.webp: ship engine glow graphics file
• gfx/ship/DIR/GFX_comm.webp: ship communication graphics (used in
the comm window)

The base graphics are stored as a spritesheet and start facing right before
spinning counter-clockwise. The top-left sprite faces to the right and it rotates
across the rowfirst before going down to the next row. The background should
be stored in RGBA with a transparent background. An example can be seen
in Figure 7.1.

The engine glow graphics are similar to the base graphics, but should
show engine glow of the ship. This graphic gets used instead of the normal
graphic when accelerated with some interpolation to fade on and off. An
example is shown in Figure 7.2.

The comm graphics should show the ship facing the player and be higher
resolution. This image will be shown in large when the player communicates
with them. An example is shown in Figure 7.3.

7.3.1 Specifying Full Paths

It is also possible to avoid all the path logic in the <GFX> nodes by specifying
the graphics individually using other nodes. In particular, you can use the
following nodes in the XML in place of a single <GFX> node to specify graphics:

• <gfx_space>: Indicates the full path to the base graphics (gfx/ is
prepended). The sx and sy attributes should be specified or they default
to 8.

• <gfx_engine>: Indicates the full path to the engine glow graphics (gfx/
is prepended). The sx and sy attributes should be specified or they
default to 8.

• <gfx_comm>: Indicates the full path to the comm graphics (gfx/ is
prepended).

This gives more flexibility and allows using, for example, spob station
graphics for a ”ship”.



7.4. SHIP CONDITIONAL EXPRESSIONS 77

Figure 7.1: Example of the ship graphics for the ”Llama”. Starting from top-left
position, and going right first before going down, the ship rotates counter-
clockwise and starts facing right. A black background has been added for
visibility.

7.4 Ship Conditional Expressions

TODO

7.5 Ship trails

TODO

7.6 Ship Slots

TODO



78 CHAPTER 7. SHIPS

Figure 7.2: Example of the engine glow graphics for the ”Llama”. Notice the
yellow glow of the engines. A black background has been added for visibility.

Figure 7.3: Example of the comm graphics for the ”Llama”.



Part II

Naev “Sea of Darkness” Lore

79





Chapter 8

Introduction to Naev Lore

This document refers to the lore of the Naev base setting known as Sea of
Darkness. Note that the lore is presented here with heavy spoilers. Do not
continue reading if you do not wish to be spoiled.

81



82 CHAPTER 8. INTRODUCTION TO NAEV LORE



Chapter 9

Universal Synchronized Time (UST)

Universal Synchronized Time (UST) is the standard time system in Naev.

9.1 Explanation

USTconsists of three basic components describing different amounts of time:
the second, which is equivalent to an Earth second; the period, which is equal
to 10,000 seconds; and the cycle, which is equal to 5,000 periods (50,000,000
seconds). In colloquial usage, the terms ”decaperiod” (equivalent to 10
periods) and ”hectosecond” (equivalent to 100 seconds) are also common.
UST dates are written in the form:

• UST C:PPPP.SSSS
Where ”C” is the cycle, ”PPPP” is the period (always displayed as four

digits), and ”SSSS” is the second (always displayed as four digits). So for ex-
ample, the following hypothetical date indicates cycle 493, period 42, second
2089 (which is about 100 cycles prior to [[The Incident]]):

• UST 493:0042.2089
When describing lengths of time, it is commonplace for computer systems

to indicate a number of periods with a lowercase ”p” or a number of seconds
with a lowercase ”s”. This convention is not used for cycles, which are always
spelled out in full as ”cycles”. This convention is also not adopted in spoken
form since it’s more natural to just say ”periods” and ”seconds” rather than a
single-letter abbreviation. Additionally, due to the metric nature of the time
system, periods and seconds can be written out as a single unit, although in
spoken conversation people report the periods and cycles separately. Some
examples:

• 783p (read as ”783 periods”)
• 42s (read as ”42 seconds”)
• 12.0456p (read as ”12 periods and 456 seconds”)

83



84 CHAPTER 9. UNIVERSAL SYNCHRONIZED TIME (UST)

The following is a chart of all time units used in Naev along with the
corresponding Earth time unit they are similar to in terms of where they are
used.

UST unit Abbreviation Length of Time Equal to (in Earth time) Used like

Seconds ”s” 1 Earth second 1 second Seconds
Hectoseconds N/A 100 seconds 1 minute and 40 seconds Minutes
Periods ”p” 10,000 seconds 2 hours and 47 minutes Hours
Decaperiods N/A 10 periods 28 hours Days
Cycles N/A 5,000 periods 579 days Years

9.2 Time passage

Following is a list of actions and how much time they take in Naev.
• Flying in space: For ships with a time dilation rate of 100* Landed: Time
does not pass while landed.

• Takeoff: Taking off takes 1 period, which means that stopping to refuel
during time-sensitive missions is generally a bad idea.

• Jumping: Hyperspace jumps also take time, generally 1 period per jump,
though some ships such as the Quicksilver take less.

9.3 History of Humanity in Naev

Notable Events:
1. Sirichana reaches Murtis (UST -143)
2. Imperial Proclamation (UST 0): Creation of the Empire
3. Project Proteron (UST 13:4355)
4. Project Za’lek (UST 42:6284)
5. Creation of House Proteron (UST 47)
6. Creation of House Za’lek (UST 72)
7. Project Thurion (UST 84:8324)
8. Creation of House Sirius (UST 97)
9. Project Collective (UST 266:7626)

10. Dvaered Revolts (UST 307)
11. Sorom Plague (UST 328)
12. Creation of House Dvaered (UST 331)
13. Quarantine of Sorom (UST 333)
14. Formalization of Soromid Faction (UST 387)
15. Hypergate Project (UST 572)



9.3. HISTORY OF HUMANITY IN NAEV 85

16. Collective Goes Rogue (UST 590)
17. The Incident (UST 593:3726.4663)

9.3.1 The First Growth (UST -1000? to UST -400)

The First Growth is seen as the true beginning of mankind’s space age.
Though space travel existed before this time, it was limited to Earth’s im-
mediate environs, and bore little in the way of fruit.

When Earth scientists devised an effectivemeans of crossing the interstel-
lar void, using advanced, long-life sublight engines and a non-lethal method of
cryogenic suspension, mankind began to dream big dreams. Over the course
of fifty years, massive starships were constructed that could carry human life
to other planets and start new colonies there. In total, twenty such ships were
constructed, and eventually eleven of those managed to seed new human
colonies in outer space. It was an achievement never before witnessed in
human history.

For a long time, the eleven colonies were on their own, as communication
with each other and with Earth was a matter of years. That would change,
abruptly and dramatically.

9.3.2 The Second Growth (UST -400 to UST -100)

While the eleven colonies painstakingly tried to develop themselves into
economies resembling Earth’s, Earth itself continued to progress scientifically.
Though no new colonization efforts were made after the first twenty, as this
was deemed too costly, different avenues of deep space exploration were
being invented, tested and discarded on a regular basis. Then, there was the
breakthrough that lies at the foundation of space travel as we know it today:
the discovery of hyperspace.

Hyperspace was found to allow travel between one point to another point
without having to cross the space in between. More importantly, the time
taken to complete the journey in hyperspace was a fraction of the time it
would normally take. Soon, the existence of naturally occurring hyperspace
connections between systems were discovered, which sealed the deal. The
stars were now within reach. Indeed, the entire galaxy lay open for humanity
to claim.

Hyperspace-capable starships were built, and sent out to explore. They
brought back reports of many potentially habitable worlds ready for the taking.
Soon after, a new colonization program was devised, and mankind truly
started spreading its wings. The Second Growth had begun.



86 CHAPTER 9. UNIVERSAL SYNCHRONIZED TIME (UST)

As humanity settled farther and farther away from Earth, a decision was
made to streamline the interplanetary relations by creating a large, democratic
body to unite all worlds in a single political system. This body was known as
the Federation.

9.3.3 The Federation (UST -300 to UST -100)

Though each colony was granted the right of self-government, the Federa-
tion was tasked with managing interplanetary affairs. Interstellar trade and
security came to fall under the Federation’s jurisdiction, and each standard
cycle the planetary governments would convene in an interstellar summit,
discussing the current state of affairs. On paper, it looked good.

Over the course of many years, many new planets were settled, converted
or exploited. Interstellar trade became immensely lucrative, new fortunes
were made. But humanity, even in times of prosperity, tends to strife and
conflict. Not only did piracymanifest itself in the vast stretches of space, there
appeared a growing discontent between the various colonies. The Federation
proved increasingly less capable of dealing with the security concerns and the
discontent between the various worlds. Gradually, the colonies began to lose
faith in Federal leadership, and began to band together in local alliances that
guarded their own interests. These interests began to conflict with each other.
Tensions grew higher and higher, until eventually the situation degenerated
into armed conflict.

9.3.4 The Faction Wars (UST -100 to UST 0)

The Faction Wars are the first interstellar war on record, and they also count
as the largest human war ever waged. Truly every human world was at war,
and precious few were safe from attack. Even Earth itself was bombed on
two occasions. Any colony that couldn’t fight off its attackers was conquered
and claimed. Colonies changed ownership time and again, factions were
eliminated, new factions formed as colonies rose against their oppressors.
Untold human lives were lost. Needless to say, no new worlds were settled
during this time, as attempting to do so would mean certain death.

After many, many cycles of constant fighting, the Faction Wars stabilized
into a three way conflict between factions calling themselves the Earth Feder-
ation, the Free Colonies, and the Rimward Block. These factions were similar
in strength, and for a time there was a balance of power. Many believed that
eventually hostilities would cease, and new political and trade relations would
establish themselves. But this didn’t happen.



9.3. HISTORY OF HUMANITY IN NAEV 87

A general serving in the Earth Federation called Duram Daedris devised
a cunning strategy. Through deceit and trickery he managed to entice both
the Free Colonies and the Rimward Block to launch an all-out offensive on
the same system, at the same time. The two fleets clashed, as was Daedris’
plan, decimating each other. This gave the Earth Federation the opening it
needed to take the initiative and gain the upper hand. The other two factions
couldn’t recover in time. The Earth Federation had won the Faction Wars.

9.3.5 Rise of the Empire (UST 0 to UST 300)

After his military victory, Daedris took political control in a military coup. The
Earth Federation was re-branded the Empire, and Daedris proclaimed himself
Emperor over all human space, ruling over the Galaxy from his throne on Earth.
For cycles, order was kept with an iron fist, while at the same time trade was
brought back to pre-war capacity. Eventually, the colonies accepted that to
live under Imperial rule was better than to die in autonomy.

The vertical chain of command installed by the Empire proved to work
better than the democratic ideals of the old Federation. A period of extended
peace and prosperity began, which would later be referred to as the Imperial
Golden Age. The wounds left by the Faction Wars slowly healed over time,
and eventually humanity began to expand anew in an ambitious Third Growth.

9.3.6 Decline of the Empire (UST 300 to UST 593)

Though the Empire was the greatest and most stable political system in all
of human history, it did not prove strong enough to stand the test of time.
Little by little, as the Empire grew and its Emperors made ill-advised decisions,
dissent crept into theminds of the Imperial citizens. Piracy once again started
rearing its ugly head, and some worlds started growing restless. Historians
are still debating what ended the Imperial Golden Age, but all agree that by the
time the working class rose in what became known as the Dvaered Revolts, it
was well and truly over.

The Empire found itself forced to cede territory and political control to the
newly formed House Dvaered, to the mysterious figure known as Sirichana
and to the ever-demanding Za’lek. Though all human worlds remained loyal
to the Empire by treaty, the sphere of influence of the line of Emperors had
dwindled considerably. What really broke the Empire’s power, though, was a
sudden, cataclysmic event known only as the Incident.



88 CHAPTER 9. UNIVERSAL SYNCHRONIZED TIME (UST)

9.3.7 The Incident (UST 593:3726.4663)

Little is known about the Incident, other than what can be observed. An
eruption of some kind occurred which decimated all planets in Sol and several
systems around it. In its wake it left a dense, volatile nebula that has proven
almost impregnable to most means of observation. Nobody ever came out
of that nebula to tell what happened.

The Empire was shaken to the core. With Earth lost, along with most of
the Imperial bureaucracy, the Imperial leadership floundered, taking almost
a cycle to re-establish itself in Gamma Polaris. Such a show of weakness
caused whatever loyalty the Empire had left from the Great Houses to evapo-
rate, to the point that it’s now a public secret that the Empire no longer holds
any sway over anybody else.

This was several cycles ago. The galaxy is now an unstable place, full of
danger and opportunity. Nobody knows what the future holds, but perhaps
one person can make all the difference.



Chapter 10

The Empire

The Empire is one of themajor factions in the Naev universe. Its governmental
system is a mixture of a republic and a monarchy, with The Emperor presiding
over all other powers of state. The Emperor delegates some of his power to
the Imperial Council, consisting of 20 councilors who pass laws to be carried
out by the Imperial bureaucracy which commands the Imperial army and
governs the citizens. However, all of the councilors can be overruled by The
Emperor. From The Empire came the Great Houses, and they interact with
the Imperial government through their respective liaisons.

10.1 The Facts

• Leader: The Emperor
• Leading Structure: Imperial Council
• Government: Republic Monarchy
• Formation: UST 0
• Homeworld: Emperor’s Wrath (Gamma Polaris)
• Important Figures:

– Emperor

10.2 Government

In accordance with the backstory of Naev, the modern Empire is but a shadow
of what it formerly was. Its government type can be described as one half
despotism, one half republic and one half paralyzing bureaucracy. The Em-
peror is the head of state as well as the Ruler of all Mankind, and he has
absolute power, on paper, at least. In reality, he is an isolated figure, inter-
acting only with his Imperial Council. The Emperor is above the Council and

89



90 CHAPTER 10. THE EMPIRE

can pass any edict he wishes without being challenged, but in practice a lone
figure cannot directly govern a domain spanning many star systems, even in
its present, reduced state. As a result, the councilors often pass laws at their
own discretion, with little oversight from the Emperor himself. However, they
too remain isolated, dealing with the theoretical implications of their work,
rarely bothering to verify that their actions have the intended result, and as
such their labors typically yield inefficacy.

10.3 Interaction with the Houses

The Council also interacts with the Great House liaisons, who represent the
”vassals of the Empire”. Whenever the Emperor requires one or more of the
Great Houses to do his bidding, the Council will pass on the Imperial Decree
to the relevant liaisons, who in turn convey the message to their respective
leaders. This is often only a courtesy however, as the Great Houses are no
longer bound to the core of the Empire beyond ancient treaties and vows of
allegiance. Typically, a Great House will put on a token show of loyalty, and
subsequently ignore the Emperor’s will to pursue its own agenda.

10.4 Imperial Bureaucracy

The Imperial Bureaucracy is whatmakes the Imperial worlds tick, though ”tick”
is a big word for what often boils down to barely managing to keep society
from grinding to a standstill. The knotted maze of rules and regulations
constructed by generation after generation of councilors makes upholding
the law an impossible task, and as such most local governments operate on
what they believe is a distillate of the core of the book of law. Needless to
say, this distillate varies from one world to the next.

The Bureaucracy also manages the Imperial military, with rather more
success than it does civilian life. This is in part due to the Emperor and his
Council’s jealous guarding of their territory (despite not caring toomuch about
what goes on inside it), and in part because the Imperialmilitarymachine often
knows what practical actions must be taken to best serve the Emperor’s ends,
though the ruling body often does not. Though in itself deeply hierarchical, the
Imperial military is ultimately an effective, if not terribly efficient, machination
that commands sufficient respect to at least keep the Minor Houses in line.



10.5. IN-GAME DATABASE 91

10.5 In-Game Database

The following section is written from an in-universe perspective. It may
contain biased information or omit facts for dramatic purposes.

10.5.1 History

The Empire began with the first, self-proclaimed Emperor Daedris who used
his forces to do battle with and eventually unite many of the the factions at
war during the Faction Wars. His success meant the end of the Faction Wars
and started the period now known as the Third Growth.

The following period of peace was a Golden Age of The Empire, with new
trade routes bringing wealth and prosperity to Empire worlds, patrols effec-
tively extinguishing piracy and, apart from minor incidents, peace reigning in
all of Empire Space.

That Golden Age ended when the Empire began to weaken and succumb
to its own bureaucratic tendencies, in turn losing control over some of its
territories. Notably, the Dvaered Revolts were a clear sign of the Empire’s
reduced ability to keep law and order.

The Empire suffered catastrophic damage from The Incident. Many Em-
pire worlds were devastated in the initial blast, and many stations and planets
are now caught in the Sol Nebula. The Empire’s power has declined since
then and the security that was ensured in the Golden Age has diminished
greatly as the Imperial military, once the guardian of much of inhabited space,
now finds itself struggling to keep the core systems of the Empire’s former
territory secure, let alone the sparsely-populated border systems or the vast
expanses beyond.

The current Emperor is aman called Eilo Cedona. He was elected Emperor
by what remained of the Council shortly after the Incident, and has held power
ever since. He is fairly inexperienced and refuses to acknowledge that the
Empire is in decline. It was he who had the Emperor’s Wrath built, and who
initiated the Emperor’s Fist project, despite the state the rest of his realm is
in. Many believe he will not be Emperor much longer.

10.5.2 Territory

The Empire still has the largest territorial claim of all factions, holding a major
part of the inhabited Galaxy centered around Polaris Prime in the Gamma
Polaris system, the official seat of The Emperor. It is there that all important
decisions of the Empire are made. However, the Empire holds outposts deep
in hostile space, like Cerberus Station in the Doeston system or Zabween



92 CHAPTER 10. THE EMPIRE

in Draconis. The core systems, those in the vicinity of Gamma Polaris, are
heavily patrolled and kept safe by the Empire military. However, frequent
patrols to the outer systems are a logistical impossibility, and the Empire
relies on its allies to keep traders safe there. Still, skirmishes between Imperial
forces and pirate raiders are not uncommon. It is a major goal of the Empire
to restore the security of its territory to levels present prior to the Incident.

10.5.3 Economy

Civilian traders will not usually be able to trade with the Empire directly, as that
trust is only given to individuals or factions enjoying a high reputation with the
Empire. After a recruitment process, individuals can be tasked with running
minor shipping assignments. Otherwise, the Empire holds trading treaties
with many important factions, including the Traders, the Dvaered (and the
Consortium). The Empire has a policy of interfering as little as possible with
the local economy of planets, beyond monitoring that there is no contraband
transported to or from them. Other than that, what commodities companies
produce on planets is of no concern to the Empire.

10.5.4 Science and Technology

Most of the scientific research is conducted by House Za’lek, but the Empire
still has research bases of its own. It remains largely unknown to the public
what projects the Imperial researchers develop. Empire engineers have cre-
ated the Peacemaker, a capital ship design which only the most respected
among the Empire military are permitted to captain, and which is unequaled
in combat by any other know vessel. These are the flagships of any larger
Empire fleets, while local patrols usually consist primarily of Admonishers
and Lancelots.

10.5.5 Political System

The Emperor is ultimately the seat of all power and has the ability to overrule
anyone, but a lone man cannot single-handedly govern an entity the size of
the Empire at any meaningfully low level. As such, the Imperial Council sits
directly below the Emperor, regulating and passing laws to ensure the Empire’s
continued existence. To be a councilor is a highly sought-after position, as
upon the Emperor’s death, the new Emperor is selected from their ranks.



10.5. IN-GAME DATABASE 93

The Imperial Bureaucracy

The council does not oversee the laws being carried out, that task falls to
the Imperial bureaucracy. It is the largest part of the Empire administration
besides the military. Enforcing the large number of laws passed by gener-
ations of councils word for word is impossible. Therefore, most members
of the bureaucracy follow what they in their best judgment believe to be the
idea behind the laws. But even that task is becoming ever more difficult
and social progress has been observed to become slower in recent years.
The bureaucracy is also the only organ of the state the people interact with
directly. Requests for audiences with the council or similar may be directed
at the bureaucracy, though they are seldom granted and some have been
known to simply disappear within the immense, monolithic complexity of
the bureaucracy. Finally, it is the bureaucracy’s task to manage the Empire
military, which it does with some success. The Emperor and the Council place
great value on the defense of their borders and the bureaucracy must ensure
that those wishes are carried out. The military works quite well on their own
and usually requires little oversight. The Generals and Commanders of the
army are known to work with great efficiency, thus, the military is often called
the most efficient part of the Empire administration.

The Great Houses

The Houses are still bound to the Empire via contracts but are effectively
factions of their own with their own government and economy. They interact
with the Imperial countries via Liaisons, chosen representatives of theHouses’
governments. When the Emperor has a particular request to one of the
houses, the Council passes his decree on to the responsible Liaison, who in
turn passes it on to his superiors. This is by no means a binding contract or
even an order. Today, the Houses are not required to follow the Emperor’s
orders and may decide for themselves whether or not to grant the Emperor’s
request.

Minor Houses

Next to the Great Houses, some Minor Houses exist, as well. The status of
a Minor House is given for various reasons like an achievement or as is the
case with the House Goddard, in return for a service.



94 CHAPTER 10. THE EMPIRE



Chapter 11

Great House Dvaered

House Dvaered is one of the major factions in the Naev universe. It evolved
from the simple working class of the Empire during the Second Growth and
the Faction Wars and was granted the status of a Great House by the Emperor
during the golden age of the Empire. Today, it is governed by the military
and the armed forces dominate much of the everyday lives of the Dvaered
citizens. Planets are governed by Warlords, former members of the Dvaered
High Command, which makes all the most important decisions about the
House. The Warlords regulate life on a local basis, while the High Command
directs the Faction as a whole. The only way of rising up is usually to join the
military and earn medals and commendations.

11.1 The Facts

• Leader: None
• Leading Structure: High Command Generals
• Government: Meritocracy
• Formation: UST 331
• Homeworld: Dvaered High Command (Dvaer system)
• Important Figures:

– Warlords

11.1.1 History

House Dvaered came forth from a lower caste in the old Empire, a collection
of miners, manual laborers, foot soldiers and outcasts. With the gradual
decline in authority of the Empire, the working class became increasingly
disgruntled with their social position. They banded together into what could

95



96 CHAPTER 11. GREAT HOUSE DVAERED

be considered the biggest labor union in all of human history, and started
demanding better treatment.

When the Empire was less than forthcoming, the laborers began to take
more drastic measures. The labor union turned into a resistance movement
that escalated into open rebellion on several worlds. History names this
movement the Dvaered Revolts. The origin of that name is unclear, but it
became common among the rebelling workers.

Cycles of civil unrest on the working planets and fruitless attempts on the
part of the Empire to quell it eventually led the Emperor of that time to agree
to the Dvaereds’ demands. Their leaders were granted the right to establish a
Great House, and direct control over a sizeable chunk of space, in reparation
for the lives lost during the Dvaered Revolts.

Eager to claim their place among the other big players, the then-time
Dvaered leadership decided that discipline was the only proper way to shape
a society. And so House Dvaered evolved into a military regime, and the
values of honor and strength were etched into the Dvaered soul.

11.1.2 Government

Today, House Dvaered is ruled by the Generals of the Dvaered military. The
amount of Generals varies from time to time, but there are always enough
to feed the fires of internal discord. Influence is usually determined by the
amount of medals and commendations a General has collected in his career.
This at least stands undisputed, for House Dvaered has extensive protocols
for dispensing awards. In fact, it can be considered a constitution of sorts.

Warlords

When a General retires from High Command, he often takes with him a small
contingent of the armed forces. These are soldiers and captains who have
sworn allegiance to the man, not the banner, and they will continue to serve
until the bitter end. The General, now known as a Warlord, will then use his
little private army to secure rule over one or more Dvaered worlds, usually by
usurping the position from another Warlord. This method of local government
is commonly accepted to be legal, and no Dvaered citizen will be surprised
when suddenly a new set of local laws will be passed to replace another.

Citizens

The Dvaered citizenry itself is barely worthy of the name. There is often
more squalor than culture, and more often than not the Dvaered will seek



11.2. WARLORDS AND DVAERED HIGH COMMAND 97

employment in themilitary, despite the dangers that represents. Nevertheless,
there certainly is a Dvaered elite. They often concentrate on the few truly
hospitable worlds in Dvaered space, where they pursue their idea of luxury.

11.2 Warlords and Dvaered High Command

While every Dvaered controlled world is governed by a Warlord at any given
time, it is Dvaered High Command that the Warlords ultimately answer to.
Though Dvaered High Command is more military than government, it needs a
steady stream of funds, manpower and materials to further its agenda. Each
Warlord is required to pay a certain portion of his worlds’ resources in tax.
Failure to do so results in a swift and permanent removal by Dvaered High
Command, after which the worlds previously held by that warlord become
available to any other Warlords with the will to take them (which is to say, all
of them).

11.3 How the Dvaered fight in space

11.3.1 Summary

• Dvaered fleets’ main strategy consists in destroying enemy heavy ships
in order to force lighter ones to retreat.

• Most Dvaered ships’ characteristics are: heavy, slow, bad manoeuvra-
bility, good armour, good cannons.

• Exception: the Phalanx has no speed malus and can more or less keep
up with the bombers and fighters to support themwith turretedmissiles.
But it has very bad manoeuvrability and as a result is nearly forced to
use turrets.

• Civilian versions are limited because of the high base weight of the
designs, but military versions have higher engine mass limit to compen-
sate. As a result, Dvaered ships are less able to stealth.

• Civilian Goddard is quite different from Dvaered version because it is
used differently by civilians and Dvaered.

• Most Dvaered designs (except for the Goddard) are modified versions
of other factions’ obsolete ships.



98 CHAPTER 11. GREAT HOUSE DVAERED

11.3.2 General doctrine of the Dvaered space navy:

Dvaered have observed during their independence war that the destruction
of supply ships and carriers is a safe way to force a fleet to retreat, and to
preserve their planets from enemy disembarkment. Their military doctrine is
based on direct and very powerful attacks on key assets of the enemy force,
that makes the enemy position untenable. They do want to avoid entering in
an attrition war as much as possible.

• Offensive doctrine: Contrary to what can be expected, Dvaered have
never been the aggressor in any large scale war against an other con-
sequent power. This is why the dvaered Generals have paradoxically
not much confidence for the invasion of the Frontier. However, during
the countless wars that have happened between Warlords, the Dvaered
have tested many tactics, and the one that is favoured by the Dvaered
generals is the following: A Dvaered attack fleet must use its superior
firepower to damage, destroy or take control as fast as possible of the
heavy enemy installations (bases on planets, stations or carriers). With-
out that support, the enemy lighter ships will eventually have to retreat
from the system. Dvaered don’t want to send expeditionary fleets far
away from their space. Their fleets require to be at max at 2 jumps from
their bases to operate. Ideally, in the same system.

• Defensive doctrine: If the objective of the enemy forces is the invasion,
it can be expected that carriers and transports will head towards the
allied assets. The goal for the Dvaered fleet will be to destroy those
heavy ships as soon as possible in order to force the enemy to abort the
invasion. Before those support ships show up, the dvaered ships must
be as discrete as possible (stay at dock) in order not to be vulnerable
to harassment from the enemy foreguard.

11.3.3 Consequence on the ships design:

Both in attack and defence, Dvaered pilots have to target heavier ships and
to ignore lighter opponents that are going to harass them. This is why they
favour forward weapons (their target is less manoeuvrable than they are) and
require high armour in order to survive harassment from light ships. However,
in the case when the enemy light ships try to interpose themselves instead of
using missiles, the Dvaered pilots should take the opportunity to pick up the
fight and destroy them, if possible in one pass. This requires very powerful
cannons, and huge reserves of energy. With their massive attack-focused
tactics, the Dvaered don’t anticipate long fights. Consequently, the shields
and their regeneration rate are not very important.



11.3. HOW THE DVAERED FIGHT IN SPACE 99

Dvaered ships are usually able to win a dogfight duel against any other
ship of the same class.

11.3.4 Origin of the ships designs (except for the Goddard):

As stealth and speed are not prominent needs, the Dvaered engineers prefer
to rely on outdated and well-known ship designs. These designs are then
upgraded with more weapon slots, better energy storing, optimized cannons
and better armour. After that, the engineers try to optimize the balance of
the ship’s mass in order to increase the maximal admissible payload. The
unoptimized version is sold to civilians, while the optimized version is reserved
to Dvaered pilots in order to grant them an advantage. The dvaered engineers
are now working on the next generation of ships, mostly based on Empire
designs (Lancelot, Pacifier, Hawking).

11.3.5 List of Dvaered Ships

• Vendetta (Fighter)

• Role: destroy bombers, swarm and engage medium ships from several
directions and get opportunity shots on interceptors and fighters. As
they fly in first line, they expect to eat many rockets during the approach
phase.

• Characteristics: cheap, heavy, slow, good armour, good cannons (kills
small ships in one pass)

• Interest for player: It is the best ship for a dogfight duel. However, its
slower top speed makes it vulnerable to multiple lighter attackers, and
to missiles.

• History: During the independence war, the Lancelot was a very new ship
and the Bat used to be the standard Empire fighter. Dvaered engineers
managed to adapt onemoreweapon slot on it, and to improve its armour,
and renamed it the ”Vendetta”. After the war, a second weapon slot and
more armour were added, and given the success of the program, the
engineers decided to try and upgrade all empire designs the same way.

• Ancestor (Bomber)

• Role: Dvaered bombers fulfil two very different roles: the main one
is to swarm and attack enemy capships at close range with powerful
unguided torpedoes. The Dvaered don’t like to use guided torpedoes,



100 CHAPTER 11. GREAT HOUSE DVAERED

because their use is too time-consuming for their radical attack tactics,
and also because of their price. The second role of bombers is to
defend a temporary static fleet against light targets (that their Vendettas
cannot reach). In that case, they use Headhunter or Fury missiles
to target Fighters and Bombers that use their own launchers against
heavy Dvaered ships. This second role is however mostly taken by the
corvettes.

• Characteristics: cheap, heavy, slow, bad manoeuvrability, good armour,
good launchers

• Interest for player: civilian version is the only bomber easily available. It
is very effective against heavy ships when used with torpedoes. Military
version is an upgrade on the civilian version.

• History: This is a redesign of an old model that was obsolete before
the civil war.

• Phalanx (Corvette)

• Role: Support fighters and bombers squadrons with turreted missiles,
and bring cover if needed. Can also be used to skirt a blocus with
supplies.

• Characteristics: heavy, bad manoeuvrability, good armour, good launch-
ers, no speed malus (ie fast by Dvaered standards)

• Interest for player: A very capable corvette when equipped with turrets.

• History: After the independencewar, analysts noticed thatmany fighters
and bomber squadrons had been lost because of harassment by enemy
light ships. This is why an engineering program was initiated from an
imperial prototype recovered on one of the freshly conquered planets.
This prototype was a fast but badly manoeuvrable corvette on which
the dvaered managed to adapt more ammo space and armour. The
design eventually became a missile-platform able to more or less catch
up with Dvaered fighters in terms of top speed.

• Vigilance (Destroyer)

• Role: Destroy enemy medium ships to defend the fleet, or engage
cruisers and carriers with railguns in attack.

• Characteristics: slow, heavy, bad manoeuvrability, good armour, good
cannons



11.3. HOW THE DVAERED FIGHT IN SPACE 101

• Interest for player: When purposely-equipped, the Vigilance can destroy
the casual Kestrel while not fearing lighter ships. As such, it’s probably
the lightest possible choice for pirate hunt.

• History: The Vigilance began its career as a Sirius prototype, with high
defensive capabilities. At some point, the project was abandoned be-
cause it did not fit the needs of the Sirius army anymore. When House
Dvaered was established, house Sirius sold them the project. Of course,
Dvaered engineers made many changes to the design to make it suit
better their own needs.

• Goddard (Battleship)

• Role: Neutralize Destroyers and up. Thanks to their advanced armour,
the Goddards can in some circumstances be used as a ram by the rest
of the fleet. What is more, all Warlords and generals of the Space Forces
have a Goddard. When two generals have a deep disagreement, they
may have a duel with their Goddards. As a consequence, they like to
have good cannons.

• Characteristics: heavy, slow, good armour, good cannons

• Interest for player: This is the best choice to destroy heavy enemies
escorted by light ships. The Goddard’s armour can even survive several
Caesar torpedoes.

• History: This ship is built on the Dvaered territory by employees of the
Goddard company (and House). It is a many-time-updated version of
the very old Goddard-class battlecruiser. Compared to the version sold
to the public (and used by House Goddard), the Dvaered version is very
different, with stronger cannons and armour, but heavier and worse
CPU and shield

• Arsenal (Bulk Carrier)

• Role: Carry supplies and troops, mainly for ground operations.

• Characteristics: slow, bad manoeuvrability, good armour

• Interest for player: This ship has the best ratio cargo-space/vulnerability.

• History: After the independence war, Dvaered engineers designed this
ship on the model of Melendez’s Rhino, but bigger and tougher.



102 CHAPTER 11. GREAT HOUSE DVAERED

11.3.6 Needed Classes

• Scout (I believe they need a good one if they want to apply their military
doctrine. Otherwise, they use the Schroedinger.)

• Cruiser: They probably need a railgun-truck ship.

11.3.7 Unused Classes

• Interceptor: Dvaered don’t use Carriers nor harassment tactics. Conse-
quently, they did not develop an interceptor. What is more, the concept
of interceptor is recent, and they did not find a foreign obsolete design
to adapt. They rely on foreign models (Hyena and Shark) in the rare
occasions when they need fast ships.

• Carrier: Dvaered don’t attack planets far from their bases. Consequently,
they do not need carriers. If at some point they need to send a fleet
far from their space, they need to borrow, annex or build a base before
proceeding. Their lack of carriers is the main reason why the Dvaered
never found the FLF base in the nebula. If really needed, Goddards
and Vigilances can receive small bays to provide support for a limited
number of light ships.

11.3.8 List of Dvaered Outfits

Used Weapons

• Gauss Gun, Vulcan Gun, Shredder and Mass Driver: Standard cannon
suite for Dvaered ships. They are the primary equipment of fighters,
and secondary for bombers. Mass Driver is part of the equipment of
Destroyers as well. This equipment is not specific to Dvaered, even if
most of those weapons are fabricated on their planets. Note that the
Shredder (light corvette cannon) does not really fit into the Dvaered
military doctrine, and as a consequence, it is rarely equipped on Dvaered
ships.

• Railgun and Repeating Railgun: Heavy cannons that equip destroyers
and up. It is a Dvaered specificity to put heavy forward weapons on their
capships, what allows for a better damage/resource ratio, but makes it
harder for their heavy ships to hit lighter enemies. Repeating Railgun is
Dvaered-specific.

• Turreted Gauss and Vulcan Gun: Turret suite that serves as secondary
weapons for corvettes and higher.



11.3. HOW THE DVAERED FIGHT IN SPACE 103

• Turreted Railgun: It does not fit into Dvaered military doctrine and is
mainly fabricated for export.

• Flak turrets and forward shotguns: unimplemented Cannon and turret
suite for Dvaered ships that expect to face many light adversaries.
Those weapons are mainly developed in anticipation of a potential war
against House Za’lek, and were not tested at large scale.

• Mace launchers: Used primarily as a short damage booster for fighters,
they can also be a secondary weapon for bombers.

• Banshee launchers: They can be used to make a fighter able to threaten
enemy heavy ships (or more realistically destroyers), or as secondary
weapons for bombers.

• Repeating banshee launchers: Dvaered-specific. They don’t carry more
rockets than the standard launchers, but have a much higher firing rate.
They are mainly used by bomber squadrons against heavy and medium
ships. They can also be equipped as damage-boosters for destroyers
or even capships.

• Fury andHeadhunter launchers: Turreted versions are used by corvettes,
to protect the fleet against missile-harassment. More rarely (when en-
emy capships are rare), non-turreted versions are equipped to bombers
for the same purpose.

• SFC launchers: Dvaered-specific. Super-Fast Collider, also known as
Suppository For Capships. This launcher was developed after the inde-
pendence war in order for Dvaered heavy ships to defend themselves
against enemy heavy ships equipped with torpedoes, but it can also
one-shot unwise fighters. It is basically a giant mace launcher. It has
low ammo and rate of fire, high speed and range, but lower damage per
second than Railguns, which makes of it kind of a situational weapon.
It requires a Large Weapon Slot.

Unused Weapons

• Guided torpedoes: Dvaered prefer to equip their bombers with unguided
weapons and to attack at closer range because it has the advantage
of execution speed and lower price. Plus, the Dvaered don’t like their
bombers to stay static and vulnerable to enemy fighters or rockets.

Particularly used utilities

• Impacto-Plastic Coating: Used on a regular basis on warships to in-
crease their absorption

• Cyclic Combat AI: Used by Destroyers and up to increase their fire-rate,



104 CHAPTER 11. GREAT HOUSE DVAERED

Corvettes on the contrary sometimes use Targeting Arrays for their
turrets

• Afterburners: Used in attack, mainly by bombers in their approach
phase, in order to have less predictable trajectories, and more rarely in
defence by fighters and bombers.

Particularly used structure outfits

• Platings: Passive platings are themost used outfits by Dvaeredmedium
ships and up, followed by the active platings, which are Dvaered-specific,
but are limited by their energy consumption. Bio-metal armour (regen-
erative plating) are nearly never used in massive fights, due to the
Dvaered favouring short and intense fights, but they find their place
in law-enforcement and counter-insurrection as they allow ships to
continue their patrol even if they received hull damage.



Chapter 12

Great house Za’lek

The House Za’lek is a major faction in Naev.

12.1 The Facts

• Leader: Za’lek Chairperson of the Board (Currently Noona Sanderaite)
• Leading Structure:
• Government: Stochastic Meritocracy
• Formation: UST 72
• Homeworld: Ruadan Prime (Ruadan system)
• Important Figures:

– ???

12.1.1 Za’lek Society

As House Za’lek was and is a gigantic think tank, its social structure leaves
something to be desired. The Za’lek half-heartedly mimic the Empire, with
one all-important Chairman of the Board, who is naturally ignored by every
other Za’lek in existence. What passes for politics in Za’lek terms is a big
room full of furious, shouting scientists, each trying to prove that their way
of running the House is best, often producing charts and graphs that are
indistinguishable from any other charts and graphs the Za’lek produce.

Nevertheless, the Za’lek get by, and their worlds run well enough to sus-
tain the many research labs, observatories and computer cores that litter
any Za’lek planet’s surface. The local economies are kept running by non-
researchers, whosemain purpose is to keep the sizable intellectual elite happy.
This seems a thankless life, but it is actually quite attractive for some, as
the Za’lek seem utterly disinterested in passing law over those they consider

105



106 CHAPTER 12. GREAT HOUSE ZA’LEK

irrelevant to progress. Effectively, this means the normal people in Za’lek
space enjoy as much freedom as anyone in the galaxy, bound only by the
unreasonable demands placed on them by the Za’lek scientists, and whatever
laws they impose on themselves.

The Za’lek have a standing army as is befitting a Great House, but it is
unclear how they manage to maintain it. As a general rule, Za’lek scientists
don’t bother with anything they consider finished and thought out, so most
concepts are never put into service except for a small number of prototypes.
Nevertheless, the Za’lek possess more-or-less standardized military forces,
so someone out there must be putting theory to practical use.

12.1.2 History

Project Za’lek

Project Za’lek was the second Great Project the Empire called into existence.
It was felt that instead of spending a portion of the Empire’s own budget to
research and development, better results could be attained by dedicating
one or more entire worlds to the pursuit of knowledge. A suitable world was
found near the border of Empire space, and there a new colony was built,
geared solely towards scientific research.

The colony prospered, and after a few decades it was found that the
planet had become too small to facilitate all the experiments and institutes
necessary to meet the ever increasing flow of research proposals. A second
world was added to Project Za’lek, and soon after a third. A few generations
later, Project Za’lek had accumulated enoughmass to develop a stable internal
economy. By this time the Project had produced numerous advances in
almost every scientific field, so the Emperor chose to bestow on the Project
the noble title of Great House.

House Za’lek

House Za’lek continued to grow and advance. Over time, it became the only
place of consequence to be for any scientists, since the Empire’s own R&D
budget had all but dried up. Gradually, the Imperial intellectual elite shifted
its weight to Za’lek space. The Empire took notice of this, but given the
steady flow of research from House Za’lek under their oath of loyalty, it did
not consider it a problem.

This changed when the Empire was finally starved of its top minds. With-
out scientists to keep up with the rapid pace of the Za’lek advancement, the
Emperor found that the latest discoveries were poorly understood by his
subjects, if they were understood at all. Measures were taken to reverse the



12.1. THE FACTS 107

process, but the damage had been done. House Za’lek’s momentum could no
longer be stopped. Before long, all the Empire was getting out of its former
Great Project was a yearly file of unintelligible reports, articles and theorems,
many of which used forms of mathematics the Imperial engineers had never
even heard of before. When asked to provide the Empire with tangible results
such as pre-produced weapons or ships, the Za’lek indignantly replied that
things like manufacturing things that had been successfully prototyped were
beneath them. They could not be coaxed to change their disposition. The
Empire, in short, was left behind.

Over the years, House Za’lek built up an impressive technological lead.
At the same time, it became more isolated, its scientists choosing to devote
their time to working on their myriad of projects rather than waste it on ”the
simpletons elsewhere”. The Empire in turn lost its motivation to seek gain
from the Za’lek, as it became clear nobody within its borders was ever going
to grasp what any of them were talking about. House Za’lek became the
equivalent of an ivory tower, forgotten by some, ignored by most.

Then, a few years before the present time, there was a change in House
Za’lek that would have attracted notice had anyone been paying attention.
Though the Za’lek had always been secretive and withdrawn, they became
much more so almost overnight. The few traders who frequent Za’lek space
say that while the border guard is almost unchanged, security in many other
systems has been dismantled, their forces relocated to one single planet:
Ruadan. Little is known of Ruadan, other than that it is one of Za’lek’s youngest
worlds. Nobody knows what goes on on its surface, as the Za’lek don’t brook
anyone in the system who isn’t expressly authorized. However, it is clear to
anyone who will see that the Za’lek have found something, or maybe created
it, and whatever this something is, they consider it extremely important. It is
unknown what they are planning, but it may well be that the universe will not
like finding out…



108 CHAPTER 12. GREAT HOUSE ZA’LEK



Chapter 13

Great House Sirius

The House Sirius is one of the major factions in Naev.

13.1 The Facts

• Leader: Sirichana
• Leading Structure: Tribunal of Arch-Canters
• Government: Constitutional Theocracy
• Formation: UST 97
• Homeworld: Mutris (Ruadan system)
• Important Figures:

– Sirichana

13.2 Social Structure

House Sirius is defined by its state religion more than anything else. Its
citizens all follow the same faith, and this faith is central to most of the
goings-on in Sirius space. This is not to say every Sirius citizen is a religious
fanatic; the Sirius have a healthy intellectual elite, including scientists and
philosophers. However, faith is always the point of reference. To the Sirii,
faith is what air is to other people. You don’t see it, you don’t pay attention to
it, you often don’t even think about it. But without it, you can not live.

The population of House Sirius is divided in three ”echelons”. They are
the Shaira, the Fyrra and the Serra. Each echelon has its own specific rituals
and rules of conduct, though all share the same basic values and beliefs. Any
Sirius citizen may move up through the echelons through effort and skill, but
on the whole most Sirii are locked in their social status.

109



110 CHAPTER 13. GREAT HOUSE SIRIUS

The Shaira echelon is essentially the lower class. Shaira Sirii perform
manual labour where it is needed, and in the Sirius Armed Forces they make
up the common soldiers and the ship crewmen. They don’t have much in life,
but then their faith is all they really need. The Fyrra echelon are the middle
class. Where the Shaira Sirii power the Sirius economy, the Fyrra drive it.
Most of the commercial and social infrastructure is manned by the Fyrra, and
as a result the Fyrra are the most visible of all Sirii. In the Sirius Armed Forces,
the Fyrra are represented by the engineers and technical workers, and even
some of the lower ranking officers. Finally, the Serra are elite Sirii. They are
often wealthy and highly educated, and so are found at the top of society.
Naturally, military academies are attended almost exclusively by Serra Sirii,
which means the Serra also form the top of the Sirius Armed Forces.

The Echelons are each led by a dedicated low-level theocratic govern-
ment. Its clerks range from minor executive acolytes to high priests, who
are responsible for justice and security. At the head of each government
stands an Arch-Canter, a zealot who can be considered the head of state for
his particular echelon. The three Arch Canters combined form the political
government of House Sirius, and it is they who deal with any outside influence,
including the Empire.

But higher still, at the pinnacle of House Sirius, stands Sirichana.

13.3 Sirichana

Sirichana, loosely translated ”lord of the Sirii”, is the focus of Sirius worship.
Unlike more traditional religions, the Sirii do not worship an abstract, om-
nipresent God. Sirichana is a man. This man was originally an early-era
colonist by the name of Richard Summers, though that name has all but
faded in history. Since that time there have been many Sirichanas, but all are
assumed to be reincarnations of the original Sirichana, and so distinction is
never made other than in a historical context.

As legend has it, Sirichana led the first of his followers through the times
of conflict following the collapse of the old Federation. In a time where
nobody could count on waking up alive tomorrow, Sirichana guided those
who would listen on a path of relative safety, always correctly predicting
where the next strike would come, always one step ahead of the violence
of war. When eventually the Empire came to control most of known space,
Sirichana and his flock settled down on a planet called Mutris, a charred husk
no-one claimed after the wars. And there Sirichana would remain. He is there
still.

Sirichana’s influence grew, and more and more came to believe in his
wisdom and protection. His followers spread through the galaxy, gaining root



13.4. THE TOUCHED 111

on many worlds around Mutris. So great was their conviction that planet after
planet began to slip from the Emperor’s grasp, its inhabitants preferring to
follow their faith than the Emperor’s will. Eventually, the situation became
such that it forced the hand of the 7th Emperor. The Emperor knew that he
was no longer in control of the worlds following Sirichana, but to re-assert
authority through force of arms on that scale would set a precedent unheard
of since the end of the Faction Wars. And so he chose to grant Sirichana
a Great House of his own, House Sirius, on the conditions that Sirichana
would not attempt to spread his religion beyond the worlds that would be
rightfully his, and that Imperial Decrees would carry the force of law among
his people. Sirichana agreed, knowing that refusal would give the Emperor
the justification he needed to start an all out war. And so matters would
remain for a very long time.

One may wonder how Sirichana could inspire faith in so many souls,
spread over so many worlds. After all, it is difficult to believe in a man who
resides on a planet far from one’s home. In point of fact, there is a good
reason why people believe as strongly as they do.

13.4 The Touched

It begins anywhere in Sirius space, on any world, in any echelon. There are
some who feel the call, the irresistible urge to come forth. Those individuals
leave their homes, sell their possessions and embark on a pilgrimage to
Mutris. Thosewho can’t afford the fare right awaywill raise themoney through
intensive labor until they can, or die trying. Once on Mutris, the pilgrims will
flock to Crater City, the holy city of the Sirii and the seat of Sirichana himself.

Crater City is indeed built in a massive crater, a legacy left by the forces
that once renderedMutris sterile during the FactionWars. Streets and houses
now cover its slopes, and in its center stands a tall, tall spire, the Tower of
Sirichana. There is not a major road, not a square in Crater City that does not
have a direct view on the Tower. To this place the pilgrims come, and here
they will reside, moving in to a suitable empty home and taking up whatever
tasks need doing. They live in Crater City with their fellow pilgrims, sometimes
for cycles on end. Nobody knows how long they will stay in Crater City, only
that they have come for one thing.

And then it happens. The one thing all the pilgrims have waited for. From
the top of his Tower, Sirichana speaks to them. All who live in Crater City
leave whatever they’re doing and stand in the streets to hear his words. There
are no records of this event, so nobody knows how long it lasts or what he
says to them. But when he finishes speaking, his listeners are no longer the



112 CHAPTER 13. GREAT HOUSE SIRIUS

pilgrims they were before. They are now the Touched, those who carry a
fragment of Sirichana’s will within themselves.

The Touched then leave Crater City, abandoning it completely, leaving its
houses, its tools, its resources behind for those pilgrims who will be coming.
They journey forth across Sirius space, and preach Sirichana’s word to the
echelons. And all who listen, all who look into the eyes of a Touched are
themselves overcome. So strong is the experience that their faith becomes
deeply ingrained into their very souls.

13.5 House Sirius: Present day

With the Incident in recent history and the Empire on the decline, House Sirius
seems poised to abandon its ancient vows and claim dominance over the
galaxy. But curiously, this does not seem to be happening as of yet. Indeed,
House Sirius seems to be brooding, turned inwards on itself. The Touched
still roam Sirius space, but their numbers are dwindling. The Armed Forces
remain effective in thwarting the jealous attempts by House Dvaered to annex
some of their world, but even they seem less resolute than they once were.
Did whatever caused the Incident also shatter the Sirii’s spirits? Or is there
something else afoot? At present, nobody knows…

13.6 In-Game Database

The following article is written froman in-universe perspective. It may contain
biased information or omit facts for dramatic purposes.

13.6.1 The Nasin

While one would think that all of House Sirius flies under a single banner,
this is not true. Just as with most other religions, as House Sirius grew,
disagreements in theology or societal structure arose, creating conflict. The
largest of the Sirian denominations is the Nasin.

While not officially recognized by the Sirian government - which reports
that even Sirichana himself condemns all splinter factions - the Nasin first
began showing up on The Wringer, in Suna, around UST 582. In very little time,
it had spread to several outlying Sirius systems. No one is actually sure who
started the splinter group, but most credit it to the figure Jan Jusi Nikoso; he
disappeared shortly after the creation of the Nasin (most likely due to the
Sirius Government), so this cannot be verified.



13.6. IN-GAME DATABASE 113

Initially peaceful, the Nasin spread a message conveying that one does
not need the Serra or the Touched to worship Sirichana, but rather one could
explore their own faith aided by none save Sirichana. They encouraged their
converts to follow themselves, guide themselves, and do away with the class
system as much as society would allow. They largely met in the homes of
volunteers, and did not have a central leader to follow.

After several cycles of peacefully meeting and quietly growing, a man
named Theodore Marxus rose to power among the Nasin. After forming
his own house church - which rapidly outgrew his small space - he banded
together several house churches and built a cathedral in a desolate stretch
on his home planet. It quickly became a place of pilgrimage, with Nasin
members flocking to it. They quickly overtook the planet, causing the Serra
to begin seriously taking notice.

On UST 593, 11 cycles after its inception, the Serra ordered amilitary strike
on the new home planet of the Nasin. The military swooped in, killing all
known and professing Nasin, and razed the cathedral to the ground. A subse-
quent proclamation was spread throughout the Sirian systems: All those not
following the Serra were not following Sirichana, and will be labelled heretics
and dispensed with. The Nasin were thrown into disarray, but unbeknownst
to the Serra, Theodore Marxus and several others had escaped the conflict,
vowing to repay House Sirius for its wrongdoing.



114 CHAPTER 13. GREAT HOUSE SIRIUS



Chapter 14

Soromid

The Soromid are a major faction in Naev.

14.1 The Facts

• Leader: Tribal Representatives
• Leading Structure: Tribal Council
• Government: Neotribal Communitariasm
• Formation: UST 387
• Homeworld: Kataka (Feye)
• Important Figures:

– None (yet)

14.2 History

14.2.1 Sorom

Soromwas a fairly hospitable planet, like many others in the galaxy during the
Second Growth. It was settled roughly halfway through the Growth, changed
ownership several times during the Faction Wars and eventually came under
the rule of the old Empire afterwards. In this it was about as average as
worlds got, just one more property in the vast expanse of the Empire.

But Sorom was also different. The population suffered from far more
frequent and more severe outbreaks of disease than was the norm in Empire
space. Thoughmedical science had already progressed to quite a respectable
level in those times, the hospitals found themselves challenged more and
more by ailments that proved difficult to cure. Indeed, the pathogens were

115



116 CHAPTER 14. SOROMID

found to evolve rapidly to grow resistant to all common forms of antibiotics
as well as other forms of treatment.

In the end, the microbes won. The people of Sorom fell victim to a plague
unprecedented in human history, one that spanned the entire world. The
plague was airborne, infecting all who breathed the air of Sorom, sparing
none. All attempts at treatment proved futile. The human immune system,
too, lacked the capacity to combat the disease.

The Empire was quick to realize the threat Sorom now presented to the
galaxy. With no known cure or inoculation, the plague would lay waste to
any world unfortunate enough to be infected by it. It was therefore decided
that Sorom should be quarantined from the rest of humanity. The Empire
implemented a blockade to deny any ships landing or takeoff, and destroyed
all spaceports on the face of the planet from orbit. The people of Sorom were
left to die.

14.2.2 Gene Treatment

The people of Sorom had been abandoned. The plague claimed more and
more lives every day. It would be a matter of years, maybe months before
nobody was left alive. Faced with no hope of survival, the remaining hospitals
and research centers decided to gamble everything on a bold plan. If the
human immune system couldn’t combat the disease, then it was deficient.
It was to be replaced by something better, something that could purify the
system of the pathogen. It was time to redesign the human body.

As the researchers had precious little time, they found themselves forced
to abandon ethics and cut corners. Many terminally ill patients were exper-
imented upon and died. Even so, nobody objected. After all, if this project
bore no fruit, all would perish. And so work desperately continued, claiming
life after life until at last a breakthrough was achieved: a new technique for
genetic manipulation.

The human genetic code could now be rewritten at will. More importantly,
new DNA could be introduced to give the subject new physical characteristics.
The immune system could be augmented and fortified to combat the disease,
and if new strands were to appear the population could easily be gene-treated
to become immune to that as well. For the first time since the Imperial
blockade began, the people of Sorom had hope again.

However, it soon became apparent that the genetic rewrite of the human
body was an extremely dangerous procedure. Eight in ten subjects would
develop severe rejection symptoms, resulting in death. Nevertheless, the
remaining subjects would recover fully and be totally immune to the plague.
Realizing that a small chance of survival was better than no chance of survival



14.2. HISTORY 117

at all, the people of Sorom underwent the treatment. Many lives were lost,
few were saved. But it was enough.

14.2.3 The Soromid

The population of Sorom was drastically diminished, but those who survived
found themselves more able than before. With the new gene treatment it
had become possible to surpass the limits of the human body, including
fertility. In only a couple of centuries the people of Sorom had replenished
their numbers, and their offspring all shared their compatibility with the gene
treatment. They altered their appearances and improved on nearly every part
of the human design. The people felt that they had now become something
more than mere human, so they styled themselves the Soromid, after the
world that had nearly destroyed them, and begin their new life as new humans.

Soon, the Soromid decided that it was time to return to the stars. The
Imperial blockade had left the system many decades past, so nothing was
to stop them. But rather than rebuild to ancient specifications, the Soromid
chose to start from scratch. They used their understanding of genetics to
grow semi-organic ships, thereby improving over known ship designs. Then
they ventured out into the galaxy.

For years Sorom had been in the books as a hazard world that could
support no human life, so the appearance of the Soromid came as a shock to
the rest of inhabited space. The Empire briefly tried to suppress the Soromid
by force on the basis that the plague could still be a threat to other worlds,
but when it became apparent that the Soromid carried no infectious diseases
whatsoever the Emperor begrudgingly acknowledged their presence in the
galaxy. It also helped that the Soromid ships proved to be quite combat
capable.

The Soromid were met with distrust. Their physical appearance and their
uncanny tendency to outperform normal people did not ingratiate them with
humanity. The Za’lek in particular weren’t amused with the newcomers, as
they couldn’t stomach that someone other than them had developed new
technology, and technology the Za’lek could not reproduce at that.

Unfazed by the reception of the other factions, the Soromid went to work.
The galaxy had plenty of suitable worlds left to colonize - at least, worlds
suitable to the Soromid. The Soromid had a far greater tolerance for hostile
worlds than humans did, and where they did not they could adjust themselves
appropriately. In time, the Soromid claimed many worlds nobody else had
ever given a second glance.

And then came the Incident. For all their improvements and upgrades,
the Soromid were hit just as hard as anyone else. Sorom was caught in the



118 CHAPTER 14. SOROMID

blast and was rendered sterile. But elsewhere in the galaxy, the Soromid
persisted. All Soromid knew the history of Sorom, and they would not suffer
to be destroyed, no matter what the universe threw at them.

Today, the Soromid have laid claim to a considerable part of the northern
galaxy. They have solidly established themselves in the galactic economy, ex-
porting their gene treatment as a service to humanity. Though deep treatment
still results in the death of most who attempt it, small cosmetic alterations
have been found to be relatively safe. It is not at all uncommon for the more
fashionable citizen to be genetically augmented. However, the Soromid have
the monopoly on anything beyond that.

14.3 Political Structure

Instead of having a fixed political structure, the Soromid have a very loose and
organic political structure that revolves around the idea of tribes. Generally,
each tribe has a council that oversees the day to day management, where all
individuals delegate most responsibility. The members of the council are not
necessarily fixed, and fluidly change over time. Periodically, and when needed,
the tribe will gather in councils to decide positions on particular issues or
proposals, where efforts are made to reach a consensus. The same structure
of councils happens at a larger scale, where instead of all individuals, tribal
representatives get together to reach consensus over matters that affect the
Soromid as a whole.

Although it would seem that the overhead of such a system would make
it unmanageable at a large scale, due to historic issues and through strong
education, young Soromid new humans are raised with a strong focus on
putting the community over the individual. Such a social education, combi-
nade with strong customs, helps keep most friction at a minimum, allowing
fast and effective decision making. When frictions arise, each tribe tends to
have mechanisms for dealing with this, while for inter-tribal issues, duels or
competitions are often used to solve issues and foster camaraderie.

The tribes can consist of a single world or even various star systems.
Each tribe usually consists of largely similarly modified individuals that are
genetically compatible, however, some tribes can consist of various dominant
genotypes. As with most of the Soromid structure, it is very flexible and fluid
where exceptions are the norm.



Chapter 15

Galactic Space Pirates

TheGalactic Space Pirates are split into tomain groups, the clans and indepen-
dent pirates. Independent pirates are further split into marauders, extremely
aggressive and not very well equipped pirates, and the normal pirates, which
tend to be better equip and usually strive to join one of the major pirate clans.

The four main clans are the Black Lotus, Wild Ones, Raven Clan, and
Dreamer clan. Each clan has several pirate lords that meet up at the pirate
assemblies where higher policy is decided, although not all clans necessary
follow through with it.

15.1 The Facts

• Leader: Pirate Lords from the diverse clans
• Leading Structure: Pirate Assembly
• Government: Aristocracy (varies by clan)
• Formation: Beginning of History
• Homeworld: Varies by Clan
• Important Figures:

– Pirate Lords

15.2 Wild Ones Clan

Formed mainly by Empire and Soromid outcasts, the Wild Ones are a violent
and aggressive clan where strength is of utmost importance. Weaker individu-
als tend to follow the stronger ones, and the strongest compete against each
other. That said, there are few deadly confrontations between clan members,
as usually the weaker one will back out and submit when they see they don’t

119



120 CHAPTER 15. GALACTIC SPACE PIRATES

have a chance. They tend to not hold grudges, which allows for their society
to work.

The clan’s territory is the sparsely inhabited area between the Empire and
the Soromid. Their main clansworld was Haven, until it was destroyed in an
offensive by the Empire and Great Houses. Since then, they have moved to
a more secluded area known as New Haven where they are careful to not
repeat the same fate.

Although they get along well with the Raven Clan, they tend to get into
fights with the Black Lotus, and look down upon the Dreamer Clan.

15.3 Raven Clan

Arguably the clan that connects all the pirates andmaintains infrastructure for
their success. The Raven Clan is formed by many ex-merchants who were fed
up with the corruption and bureaucracy of the Imperial system, and decided to
do their own thing. They deal in smuggling and black market trade, although
they do not shun nor turn away from the occasional raid and normal piracy.
They are very diplomatic and put strong emphasis on human relationships,
which they foster to maximize the success of their trading endeavours.

They mainly inhabit the Qorel tunnel, which is a chain of systems not
accessible through standard jump points. They have several bases along it
and use their cunning and secrecy to supply goods and connect all the pirates
together. Due to their fundamental role, they tend to have strong connections
and relationships with all the other pirate clans. They also work with corrupt
officials of the Great Houses, and pretty much anyone that has the credits to
pay.

15.4 Black Lotus

One of the most well organized pirate clans, the Black Lotus prides itself in
methodology and organization. Members follow strict recruitment policies to
slowly go up in the ranks and gain more power in the hierarchy, very similar to
large corporations. Discipline is swift and punishment is carried out in public
form to make sure everyone follows the rules, making them one of the most
rigid pirate clans.

They inhabit the pocket of space betweenHouseZa’lek andHouseDvaered,
where theymake a fortune from specializing in stolen research equipment and
oddities from the universe. They also tend to run protection rackets, which
are often favoured over the whimsical Dvaered Warlords and can provide
more stability to the area.



15.5. DREAMER CLAN 121

15.5 Dreamer Clan

The newest of the main pirate clans, the Dreamer Clan was able to capi-
talize on the Incident and establish itself as a force to be reckoned with.
Formed mainly by refugees and outcasts of the so-called ”civilized society”,
the Dreamer Clan is formed by individuals who do not want to follow rules.
They have no hierarchy and form an eclectic and anarchistic bunch, giving
lots of leeway for personal freedom and using voting and other systems to
decide how to take action. They heavily rely on piracy, and most individuals
pursue artistic talents when not raiding nearby convoys or scavenging from
wrecks from the Incident. They are also renown for being a large hub of illicit
substances, which their members use freely and some claim to get Sirius-like
psychic powers from substance abuse.

They are located in the Nebula, near House Sirius and the Frontier, making
use of abandoned planets and stations, which they adapt to their purposes.
Although they tend to have little contact with other pirates outside of assem-
blies, they have lots of trade with the Raven Clan, which wants access to the
lucrative drug trade. Although in general less organized than other clans, they
can be ruthless at raiding convoys, sometimes going deep into House Sirius
space.

15.6 Independent Pirates

Formed by individuals that have given up on society and turned to piracy to
make a living. They form a large part of all pirates and end up doing lots of
the grunt work for the clans. As long as they do not cause problems they are
welcome at all pirate clansworlds.

15.7 Marauders

Usually formed by individuals that are not fit by the clans due to extreme
violence, no critical thinking, problematic behaviour, no hygiene, or all of the
above. They are tolerated by other pirates, who tend to exploit them and give
them scraps, but they usually end up with short life spans.

15.8 Pirate Assemblies

Usually occurring once a cycle, pirate assemblies are as formal of a gathering
as you can find in the pirate world. They are usually held at more neutral



122 CHAPTER 15. GALACTIC SPACE PIRATES

pirate clansworld, such as those of the Raven Clan, and consist of several
decaperiods of partying and lawmaking. The main event consists of the
meeting of the Pirate Lords whowill listen to proposals and decide on courses
of actions, while letting their crew loose.

The assemblies tend to be a good opportunity for the Pirate Lords to
calculate each other strengths, where they tend to bring significant ships from
their fleet. In many ways, the pirate assemblies tend to not only determine
the future of the space pirates, but also tend to shape the future of the galaxy.

The events tend to also attract the attention of other actors in the galaxy,
with most Great Houses and the Empire sending somewhat undercover
agents to try to get a glimpse of what is going on and gain advantage over
other Great Houses. It is also common for less scrupulous merchants to
show up as it can be a very profitable opportunity to sell grog and equipment
to the drunken pirates.



Chapter 16

Project Thurion

The Thurion are a major faction which is unknown to the modern Empire.
Project Thurion used to be a top secret Empire project. Only few people knew
about it. All documentation was lost during the incident.

16.1 The Facts

• Leader: None
• Leading Structure: Self-Organizing Groups
• Government: Digital Communalism
• Formation: UST 84:8324 (start of the project) / UST 387 (established
colony on Sabe)

• Homeworld: Sabe (Nava system)
• Important Figures:

– Gestalt Conciousness

16.2 History

16.2.1 Project Thurion

Project Thurion was a secret Great Project founded by the Empire with the
purpose of ascending the human existence to the next evolutionary stagewith
the use of genetic engineering, cybernetics and brain-computer interfaces.
Needless to say, the research conducted wasmorally questionable and barely
legal. Therefore, the project was top secret. Only few people knew about the
project and it was closely guarded. The location of the project was chosen
to be a remote planet (Sabe) which had been just recently discovered and
lies beyond the periphery of known space. The whole area (including Booster

123



124 CHAPTER 16. PROJECT THURION

and Katami) has been declared as military exclusion zone to prevent civilians
from accidentally stumbling upon the planet.

The scientists involved with the project received generous funding and top
tier equipment. Yet there has been only little progress and an increasing num-
ber of casualties. The Empire grew impatient and increased pressure on the
scientists while also giving them greater freedoms. The experiments turned
more and more inhuman. They focused on their brain-computer interfaces
and the amalgamation of the human mind and machine intelligence because
they made previously some progress on understanding the human conscious-
ness. The work on cybernetics and genetic engineering was scratched be-
cause it led to too many incidents and casualties.

Ultimately, they succeeded in creating specialized hardware capable of
simulating a human brain and the necessary technology to digitalize a human
brain which involves the use of brain-computer interfaces and destructive
tomography methods. Needless to say that the procedure did not work
out well for the early test subjects. In the end, however, they were able to
reliably upload a human mind to specialized computer hardware. Naturally,
this has some implication. For instance, the uploaded individuals would be
immortal. But as they would exist only within a simulation, their perception
of the outside world and ultimately their reality can be manipulated at will of
whoever operates the system. Only by now did the scientists realize which
consequences their findings could have. Heated discussions followed. In the
end everyone agreed to keep their true findings a secret.

The Empire, however, was displeased with the presented results. In UST
125 it was decided that the project would be terminated at the end of the next
cycle. That involves ’sterilization’ of the colony where the research has been
conducted, i.e. they planned to nuke the colony killing all personnel except
some high ranking military officers in the process. The project has been
highly unethical and the results could not justify any of the crimes committed.
Thus, the Empire decided to purge project Thurion from history.

The scientists, however, found out about the plan with just enough time
left to come up with a plan. The system has been quarantined by then. Any
attempt to flee would be pointless. Instead they used their resources to
built a small bunker inside an asteroid. Too small for people to survive, the
bunker would hold the data of uploaded individuals, a few devices that can
run an uploaded human mind (powered down) and the machines necessary
for the uploading process as well as documentation of their work. They made
sure that the bunker is hidden well and hoped the Empire would not notice it.
There was, however, a traitor who did not want to be uploaded and thought
the Empire would let him live in exchange for information on the plan. Of
course, the Empire officials were set on carrying out their orders strictly. The



16.2. HISTORY 125

colony has been destroyed and the military began to search for the hidden
bunker. They did not manage to find it, however, as it was hidden too well.
After one cycle they gave up on the search. The emperor ordered that the
systems remains quarantined for at least the next 400 cycles. And so access
to that system was not possible and the hidden bunker was never to be found.

The second part of the scientists’ plan was the activation of a transmitter
that reveals the position of the bunker. They assumed that the Empire would
forget about project Thurion after some time and programmed the transmitter
to activate after 200 cycles. By that time, however, the system was still
under lock down and Empire fleets occasionally patrolled the system. Soon
enough they would find the hidden bunker. But in UST 307 the Dvaered
revolts occurred. Only the emperor himself knew about project Thurion. The
commanding general assumed that the reason for the patrols was to prevent
pirates from settling in the area and decided the fleet should be deployed in
the conflict with the Dvaered.

In the end, instead of an Empire patrol some scavengers found the bunker.
They were greeted by a hologram that not only claimed to be a human but
also sounded pretty much like a real human. The scavengers assumed the
technology could be pretty valuable and sold it to the highest bidder which
happened to be a rich aristocrat. The uploaded scientists had an easy time
to win the aristocrat over by promising him power and immortality. They
used his capital to build up a sect surrounded in secrecy. The inner circle
was formed by the uploaded individuals. Novices would not know about the
upload process and only heard rumours about some kind of ascendance.
The Thurion actually hold their promise and upload trustworthy members.

After some time the sect became too large and it became difficult to
remain hidden. Therefore, they relocated their infrastructure over time to the
Nava system (starting in UST 387) which remained largely ignored. Because
the uploaded individuals need only energy and basic maintenance, logistics
are fairly simple. At this time questions about the goals of the Thurion came
up. They had no intentions to grow further. The size of the organization was
large enough to sustain itself. They decided that further growth would only
increase the risk of being uncovered and adopted an utopian view. While
back then the scientists denied the Empire access to their technology, they
now come up with utopian visions for their organization. Every human should
have the chance to lead an ideal live in a virtual environment after what the
uploaded individuals consider a deprived life in retrospective. They planned
to one day rejoin the rest of humanity and to freely share their technology
with everyone.



126 CHAPTER 16. PROJECT THURION

16.2.2 The gestalt consciousness

The minds of the first few test subjects that were uploaded were broken
beyond repair. For some others the procedure lead to major issues, but
eventually the scientists working on project Thurion managed to solve them.
The first successfully uploaded test subject did not even realized just what
kind of experiment was conducted on them. The scientists, after being
uploaded and rescued from the bunker, did not notice any changes in their
personalities or thought patterns either and concluded that the method works
flawless. Soon enough they started to upload further humans.

However, after some cycles issues began tomanifest. Their minds started
to break down which is visible in random changes of personality and the
appearance of mental illnesses that grow worse over time. Although the
initial symptoms are rather harmless, the Thurion realized that they had little
time left to solve this issue. They came to the conclusion that the source of the
problem are certain neuronal patterns that emerged within their simulations
and do not naturally occur. Working under pressure they did not found away to
fix the simulation methods but came up with a rather hacky fix instead. They
used the previously established communication network that allows uploaded
Thurion to directly interact with each others and made a machine learning
algorithm that used this network to directly access the Thurions’ minds and
cross reference their neuronal patterns. The program is then identifying the
abnormal neuronal patterns and resets them to their ’natural’ state. Since
this method apparently has been very successful and the problems stopped
the Thurion did not further investigate.

Again, since they needed to work under pressure and did not have enough
time for proper testing they failed to see the long term effects that this hotfix
would have. Somehow, some form of gestalt consciousness has slowly
formed over time. It emerged from the collective behavior associated with the
interactions of the uploadedThurions’ minds conveyed by the aforementioned
algorithm. The gestalt consciousness works and thinks fairly different from a
humanmind and originally had little to no influence over the uploaded Thurion.
Over time its influence over their minds has grown but the uploaded Thurion
were affected to greatly varying extends. Some Thurion were barely affected
while for others the gestalt consciousness has manifested as some kind of
split personality which is identical for all Thurion. In the worst case and over
a long exposure time (the first case occurred after the incident) the uploaded
individuals become merely a puppet of the gestalt consciousness.



16.2. HISTORY 127

16.2.3 The incident

The Thurion were mostly unaffected by the incident. The nebula did not
spread out to the Nava system where the majority of their infrastructure was
located. They did, however, loose all personnel and their followers inside
Empire space.

Under the influence of the gestalt consciousness the infrastructure in
the Nava system has been greatly expanded and two more planets have
been colonized prior to the incident and the Thurion began to expand quickly.
They have acquired enough biological population to survive. Shortly after
the incident they began to send scouts into the nebula to investigate the
situation and eventually help the few survivors on their side of the galaxy. All
survivors were integrated into their society and the Thurion started research
on surviving the harsh condition within the nebula. Once counter measures
were invented the Thurion started to quickly expand in the now empty space
within the nebula. By salvaged the debris they found they were able to expand
their infrastructure quickly. Most of their infrastructure is highly automated
and operated by uploaded Thurion. Human resources are rare and thus
valuable.

Once the Thurion found a path through the Sol nebula towards the rest of
the galaxy the gestalt consciousness decided to prepare a war against the
Empire. It was influential enough at this point to manipulate the majority of
the Thurion into supporting the war. When asked about their reasons most
Thurion would tell about the crimes of the Empire and about their utopian
ideals which they still believe in but sadly are no longer able to act according
to. The gestalt consciousness became obsessed by hunger for power and
the easiest way to satisfy it is to upload more human minds.

Only few of the uploaded Thurion have ever noticed the gestalt conscious-
ness. Most of thoseweremanipulated by it to think the gestalt consciousness
is harmless or even beneficial and has no influence over individuals. The
number of uploaded Thurion who know the truth is tiny and the gestalt con-
sciousness is able to use its limited influence over those individuals to stop
them from taking any successful actions against it. There is, on the other
hand, a larger number of biological Thurion who are aware of the gestalt
consciousness and formed amovement to stop it. Their options are, however,
very limited.

16.2.4 Government

Originally, the system used by the Thurion was direct democracy where all
uploaded Thurion made a majority vote for every single political decision.
Biological Thurion have no political rights and are treated similar to children.



128 CHAPTER 16. PROJECT THURION

However, as the gestalt consciousness grew stronger more and more de-
cisions were made in accordance with its will. Without most of the uploaded
Thurion even noticing, the system turns slowly but surely into a dictatorship
of the gestalt consciousness.

16.3 Space combat

16.3.1 Summary

• The Thurion have ever since been hiding from the Empire. They are
defensive in nature and feel save while remaining unseen.

• Therefore, the Thurion ships are very defensive. They sacrifice weapon
slots for utility slots.

• Furthermore, their ships are stealthy and are resistant to the Sol nebula.
• The Thurion prefer either short range weapons since they are able to
get close to their target with stealth or long range missiles fired from
safe distance.

16.3.2 Tactics

• The Thurion carry out surprise attacks with cloaked ships. They are built
for survival and will retreat with the use of utilities such as afterburners
or blink drives once they take too much damage and remain in stealth
mode until their shields have been replenished.

• Inside the nebula the sensor range of their opponents is reduced. There-
fore the Thurion are able to even hide an entire fleet and launch devas-
tating surprise attacks on large scales.

• Outside the nebula their tactics have a much smaller advantage.



Chapter 17

Sovereign Proteron Autarchy

Formed from the formerGreatHouseProteron, the SovereignProteronAutarchy
played a pivotal role in the history of the universe. It arose from an Emperor’s
desire to create a revolution in the sphere of society and societal structure.
The project performed all too well, creating a Great House that surpassed its
progenitor in nearly every way, and chafing at its restraints. These tensions
escalated into all-out war, with devastating consequences to both bodies,
because neither have the Proteron heard of restraint nor the Emperor of
caution.

17.1 The Facts

• Leader: High Autarch Python
• Leading Structure: Circle of Autarchs
• Government: Autarchy
• Formation: UST 47
• Homeworld: <!– TODO: find the actual homeworld–>
• Important Figures:

– Autarchs
– HA Python

17.1.1 House Proteron Society

House Proteron worlds were governed by a totalitarian regime that required
its citizens to follow their dictated daily routines, severely punishing trans-
gressions under a zero-tolerance policy. A Proteron citizen was never their
own person. They were an asset of the government, their life’s labor neatly
represented in a book keeping column somewhere. Even the details of their
private life were managed and tallied by the authorities. Despite the lack of

129



130 CHAPTER 17. SOVEREIGN PROTERON AUTARCHY

freedom and privacy, Proteron citizens were not slaves. The government kept
them in top shape, providing an adequate supply of health care, relaxation,
and entertainment, making sure all predispositions and tastes were catered
for. This kept citizens happy to trade independence and privacy for comfort
and security. As such, a subject was often able and willing to work at optimal
performance. A Proteron citizen’s life was thus quite a satisfying one, though
excitement otherwise than the terminal kind was rare.

House Proteron’s worlds were all specialist worlds. They were geared
to performing a limited selection of tasks according to the planet’s natural
properties or location. The inhabitants on a world were placed there by the
government. Each individual wasmeasured and tested, then sent to the world
where they could be of the most use. As such, Proteron society was built of
individuals rather than families - a family would only have complicated the
relocation process.

The local planetary governments were directly responsible to an Autarch.
An Autarch managed many worlds as a sector, with the number depending
on how densely populated and productive the worlds were. Once every four
cycles all the Proteron Autarchs met in a Circle. During these meeting, the
Autarchs would evaluate the development of each Proteron world individually
as well as that of the greater Proteron body in general. Based on this evalu-
ation, goals were set for the next four cycles. Each Autarch was expected
to meet or exceed these goals, and those Autarchs who failed to do so were
removed from office - in a very permanent manner.

For day-to-day and urgent decisions that could not wait for many cycles,
and further to ensure that the Circle did not become complacent, the Proteron
also had a High Autarch. They and the Circle were supposed to balance each
other’s power.

17.1.2 History

When the Empire was still the undisputed power in the galaxy, it knew it could
not last unless it was prepared to change with the times. As the people lived,
adapted and expanded through the universe, there would undoubtedly be
problems that could not be addressed by an antiquated regime. A repetition
of the Faction Wars was to be avoided at all costs. Therefore, the Empire
set up Project Proteron, an experimental environment to test new forms of
government and galactic administration. The purpose of Project Proteron
was to be the test-bed of the ”next generation” Empire, an improved form
of government that would keep the galaxy stable and under the rule of the
Emperor.

Project Proteron was limited to a few worlds at first, on the basis that a



17.1. THE FACTS 131

galactic government could only succeed given stable planetary governments.
Soon, however, the scope of the project expanded as its overseers came to the
conclusion that planetary government needed to be designed simultaneously
with galaxy-wide administration. Within a decade of its inception, the worlds
assigned to Project Proteron numbered more than a dozen.

The Empire, eager to see results, continued to push the experiment to
work faster and more efficiently. As a direct result of this, the more liberal,
decentralised processes were eliminated from the test roster, and more
emphasis was put on controlled, high-yield social structures. More and more
planets were added to the project, its populations relocated, re-educated
and re-assigned for a better turnout. The concepts of personal liberties and
privacy becamemore and more secondary to the collective performance, and
eventually were abandoned altogether by those who led the Project.

The expansion and results of the Project led the then Emperor to promote
Project Proteron from an Empire-commissioned Project to a full-fledged,
independent Great House. The philosophy was that House Proteron would
eventually become a prototype for the New Empire, and once all the bugs
were ironed out, its model would be implemented in the entire known galaxy
and House Proteron would once again be part of the greater Empire.

The Sovereign Proteron Autarchy and the Incident

With its new title, House Proteron enjoyed more freedom and independence
than it had so far, ironically. Its leaders eagerly made use of their increased
authority, further fine-tuning House Proteron for economic and industrial
efficiency as well as social control. Taxes were levied. Ships were built. A
well-oiledmilitarymachine and intelligence agency were created from scratch,
securing House Proteron from hostile influences from within and without. In
only a few decades, House Proteron had become a powerful diplomatic and
economic factor in the galaxy.

As time passed, House Proteron began to notice the cracks in the old
Empire. Already unhappy with the Emperor’s reticence in dealing decisively
with the Sirii, the Empire’s handling of the Dvaered disgusted the Proteron.
Rather than reassigning the workers and improving their living standards
to allow them to reach their true potential, the Empire gave up on them. In
addition, it had been centuries since the Za’lek had given more than the
cursory nod to Imperial authority. The House generally blamed the Empire’s
social structure for its inability to command the loyalty of its subjects. The
House, on the other hand, had grown by leaps and bounds, claiming more and
more space for their systems, even bordering Sol. The final straw was the
Quarantine of Sorom, where the Empire simply laid down and let a disease



132 CHAPTER 17. SOVEREIGN PROTERON AUTARCHY

claim a whole planet.
Some debate followed, but the consensus was that House Proteron had

achieved its original goal, and now it was time for the weak Empire to make
way for the new generation of galactic dominance. But when the Proteron
High Autarch delivered this message to the Emperor, he was furious at the
perceived insult and ordered all Autarchs executed. Appalled at this reaction,
the Circle concluded in an emergency meeting that the Empire had no inten-
tion of honoring the original agreement, thereby forfeiting its claim to the
loyalty of House Proteron. It was clear to the Circle that should the Empire
insist on trying to turn the Proteron into another Dvaered incident or, worse
still, turning them into Empire systems, there could be no peace with them.

Knowing that they could not at the time resist the entire might of the
Empire’s infrastructure, the Proteron decided to plant their agents in every
major Imperial agency while publicly grovelling at the Empire’s feet. Soon
enough, the Proteron were even in charge of the Empire’s covert operations
against the Proteron. Now having loosened their leash greatly, they set out to
prepare for a galaxy-scale war. While they worked, the shape of the galaxy
was changing, so to speak.

New advances in quantum engineering led to the development of quantum
transtators and translators, alternative travel engines capable of bypassing
warp points and so changing conventional military doctrine, which recom-
mended fortifying chokepoint systems on the warp network. Expecting cor-
rectly that the Empire had not even thought of this change, the Proteron
decided to bypass their defences using the new hypergate being built in Sol.
After all, once the Emperor and their successors were in their hands, the
war would be essentially meaningless. They built a hypergate in secret in
their home system, Protera. They seceded from Imperial authority as soon
as the gate was built and moved a small fleet as a feint into the classical
defences. When the Empire took the bait, the Sovereign Proteron Autarchy, as
they now styled themselves, sent the most massive fleet ever seen through
their hypergate.

Then the Incident occured.
After the dust settled, Protera was inaccessible, Sol was unreachable,

their planets, factories and fleets had been decimated and the Circle was
mostly gone. Thankfully, enough of the hierarchy remained that society did
not dissolve. The Proteron scientists set out to determine the cause of the
Incident, and their best answer is that the large number of ships travelling
all at once through the hypergate overloaded it, causing Sol to explode with
a huge mass of material, causing a chain reaction that obliterated systems
and changed the warp network. On the other hand, Protera was visible with
no occlusion by the Nebula, but every scout they sent started to behave



17.1. THE FACTS 133

erratically and eventually stop communicating. Seeing this, the new Circle
issued a moratorium on exploring the systems toward Protera.

Armed with the knowledge of their situation and their error in the first
attempt, the tenacious Sovereign Proteron Autarchy is back on track to take
over the Empire. They are already on their way to build an improved hypergate
that will not fail like the last one.

17.1.3 Proteron military tactics

The Proteron favour pilots on the larger spaceships and keep smaller ships
unmanned. Extensive simulations, dogfights and mock battles revealed that
fighters and bombers were largely outclassed by a fleet of unmanned drones,
being harder to replace and less maneuverable. This means that their fleet
strategy is not easy to adjust on the fly, so they developed the Euler, a fast
and stealthy scout ship to ensure that there are no surprises facing the fleet
when it commits to an attack. Similarly, it is illogical to commit before probing
the enemy’s weaknesses, so fleets consisting of smaller ships harass and
draw out enemy fleets until the capital ships and their fleets of drones can
reduce the enemy to dust. At the same time, a ship must be either capable of
damage or of movement, else it is merely a sitting duck. Thus their destroyers
and corvettes are faster than expected for ships of their size.

Further, the fleet does not believe that the pilot should hesitate to sacrifice
themself to help the fleet on the path to victory. As such, the Proteron largely
follow a doctrine of no retreat to encourage pilots to fight to the death unless
indicated otherwise ordered. The larger ships with the pilots are therefore
also built to outlast any enemy in damage-dealing capability.


	Introduction
	What is Naev?

	I Naev Engine
	Introduction to the Naev Engine
	Getting Started
	Plugins

	Plugin Framework
	Directory Structure
	Plugin Meta-Data plugin.xml
	Plugin Repository
	Tips and Tricks
	Making Compatible Changes

	Extending Naev Functionality [height=14pt]Naev.png
	Adding News [height=14pt]Naev.png
	Adding Bar NPCs [height=14pt]Naev.png
	Adding Derelict Events [height=14pt]Naev.png
	Adding Points of Interest [height=14pt]Naev.png
	Adding Personalities [height=14pt]Naev.png


	Missions and Events
	Mission Guidelines
	Getting Started
	Basics
	Headers
	Memory Model
	Mission Variables
	Hooks
	Translation Support
	Colouring Text
	System Claiming
	Mission Cargo
	Ship Log
	Visual Novel Framework [height=14pt]Naev.png

	Advanced Usage
	Handling Aborting Missions
	Dynamic Factions
	Minigames
	Cutscenes
	Unidiff
	Equipping with equipopt
	Event-Mission Communication
	LuaTK API
	Love2D API

	Tips and Tricks
	Optimizing Loading
	Global Cache
	Finding Natural Pilots [height=14pt]Naev.png
	Making Aggressive Enemies
	Working with Player Fleets

	Full Example

	Systems and System Objects
	Systems
	Universe Editor
	System XML
	System Tags [height=14pt]Naev.png
	Defining Jumps
	Asteroid Fields

	System Objects (Spobs)
	System Editor
	Spob Classes
	Spob XML
	Spob Tags [height=14pt]Naev.png
	Lua Scripting
	Techs


	Outfits
	Slots
	Ship Stats
	Outfit Types
	Modification Outfits


	Ships
	Ship Classes
	Ship XML
	Ship Graphics
	Specifying Full Paths

	Ship Conditional Expressions
	Ship trails
	Ship Slots


	II Naev ``Sea of Darkness'' Lore [height=14pt]Naev.png
	Introduction to Naev Lore
	Universal Synchronized Time (UST)
	Explanation
	Time passage
	History of Humanity in Naev
	The First Growth (UST -1000? to UST -400)
	The Second Growth (UST -400 to UST -100)
	The Federation (UST -300 to UST -100)
	The Faction Wars (UST -100 to UST 0)
	Rise of the Empire (UST 0 to UST 300)
	Decline of the Empire (UST 300 to UST 593)
	The Incident (UST 593:3726.4663)


	The Empire
	The Facts
	Government
	Interaction with the Houses
	Imperial Bureaucracy
	In-Game Database
	History
	Territory
	Economy
	Science and Technology
	Political System


	Great House Dvaered
	The Facts
	History
	Government

	Warlords and Dvaered High Command
	How the Dvaered fight in space
	Summary
	General doctrine of the Dvaered space navy:
	Consequence on the ships design:
	Origin of the ships designs (except for the Goddard):
	List of Dvaered Ships
	Needed Classes
	Unused Classes
	List of Dvaered Outfits


	Great house Za'lek
	The Facts
	Za'lek Society
	History


	Great House Sirius
	The Facts
	Social Structure
	Sirichana
	The Touched
	House Sirius: Present day
	In-Game Database
	The Nasin


	Soromid
	The Facts
	History
	Sorom
	Gene Treatment
	The Soromid

	Political Structure

	Galactic Space Pirates
	The Facts
	Wild Ones Clan
	Raven Clan
	Black Lotus
	Dreamer Clan
	Independent Pirates
	Marauders
	Pirate Assemblies

	Project Thurion
	The Facts
	History
	Project Thurion
	The gestalt consciousness
	The incident
	Government

	Space combat
	Summary
	Tactics


	Sovereign Proteron Autarchy
	The Facts
	House Proteron Society
	History
	Proteron military tactics




